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ABSTRACT

Variational Auto-Encoders (VAE) and Long Short-Term Memory (LSTM) are in-
vestigated in this article in the framework of Structural Health Monitoring (SHM). The
presented approaches aims to combine sensor data with numerical modelling of the dy-
namical system in a Reduced Order Modelling setting. Two Finite Element case-of-study
are proposed with the scope of identify non-linear forces and physical parameter degra-
dation. Starting from a reduced set of sensors data and different levels of knowledge of
the physical system, the reconstruction capabilities of time series data are presented and
compared for both proposed architectures.

INTRODUCTION

With the advances in the development of predictive Machine Learning algorithms,
physics-informed solutions have attracted great attention in the field of Structural Health
Monitoring (SHM), by combining sensor data with numerical modelling. Different ap-
proaches may be adopted, ranging from white-box modelling to black-box modelling,
depending on data availability. Grey-box modelling considers a partial level of knowl-
edge of the physical system embedded in the network architecture. This setting has sev-
eral advantages since often it is not possible to reach a perfect knowledge of the system
e.g. unknown non-linearities, un-predictable physical phenomena. However, the effort
needed in reaching the right level of accuracy of analytical or Finite Element (FE) mod-
elling might limit the usage of these techniques compared to standard black-box mod-
els. Moreover, FE models of large-scale structures are computationally expensive and
require data-reduction approaches, i.e. Reduce Order Modelling (ROM). The autoen-
coders (AEs) have been widely used in literature to approach ROM in the field of struc-
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tural mechanics [|1,2]]. Long-Short-Term Memory (LSTM) combined with AE can reach
fast and accurate reconstruction and prediction of the operational life of a structure from
the knowledge of a limited set of sensor data. Nevertheless, these models do not take
into account the physics of the system representing a purely data-driven approach. The
recent development of Physics-Informed (PI) Neural ODE in a Variational autoencoder
(VAE) [3] framework gives some advantages over the data-driven solution of LSTM-
AE. In this contribution, LSTM-AE and physics-informed VAE are compared in terms
of the reconstruction capability of the dynamics of the physical system, by addressing
the identification of 1) internal non-linear forces and ii) physical parameter degradation.
Two FE case-of-study are proposed: i) a 2D cantilever beam with grounded cubic spring,
ii) 3D model of Double-Cantilever-Beam (DCB). The global parametric reduction basis
is computed through Proper Orthogonal Decomposition (POD) [4] and embedded in the
VAE architecture.

GENERAL REDUCED ORDER FINITE ELEMENT MODELLING WITH AUTO-
ENCODERS

The numerical simulation of a large-scale component involves the usage of FE model
with a large amount of Degrees of Freedom (DoFs). In order to reduce the computational
power needed to simulate these models, a proper Model Order Reduction (MOR) tech-
nique is used to perform the projection of the Full Order Model (FOM) with x € R"/
DoFs into a lower dimensional space of q € R"" DoFs with n, < ns. Given the
reduction basis & € R"/*"" the following approximation holds:

x & &g )

The state-space formulation of the reduced model can be written as follows:

z = f(z,u)
{ y = C,(z) + Du @)

where z € R*™" is the vector of concatenated generalized coordinates and time deriva-
tives §. By solving Eq[2] z(¢) is projected back into the FOM to obtain x(¢). This trans-
formation goes from low-dimensional to high-dimensional space and in a ML frame-
work can be interpreted as a decoding operation achieved by the decoder module on the
network Z(z), as indicated in Figure |1, where C,(z) = C%(z). The encoder & (x)
performs the opposite operation of the decoder by mapping the FOM into the ROM as
in Eq[I} % and y in Figure [I] are respectively estimated DoFs and measurements. With
reference to Figure|l] the decoder Z(z) can be modelled in two ways:

* 9(z) = ®: neural network with a single layer with fixed weigths and zero bias.
The reduction basis & is pre-computed.

* 9(z) = NN(z): multi-layer perceptron with trainable parameters

In the second case, the reduction basis is trainable and defines a non-linear transforma-
tion but lacks of physical constrains. The AE model shown in Figure |1{ can be used for
faster simulation of high order FE systems when the input data is the FOM vector of
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Figure 1. Scheme of Reduced Order Modelling simulation with Autoencoders.

DoFs x. The scope of this article is to use AEs for SHM purposes. During the oper-
ational life of a structure, a subset of sensors are measured, thus the full time histories
of the FOM are unknown. From here, the need to replace the encoder with & = &(y),
which takes as input the measurements y € R" and returns the initial time conditions
of the reduced system. Given the architectures shown in Figure[T] two models are inves-
tigated in this contribution:

Variational Autoencoder (VAE): the encoder &(y) is composed by a multilayer percep-
tron (MLP) and a recurrent neural network (RNN) to estimate the initial state qo and g
respectively. More details can be found in [3]. The model f(z,u) is assumed to be par-
tially known, i.e. f(z, 1) = fpasetine(%, 1) + NN (z). The baseline function indicates the
linear system, while the residual term takes into account for unknown phenomena and it
is modelled as a trainable MLP. The decoder (=) can be trainable or non-trainable.

Long Short-Term Memory (LSTM): the encoder & (y) is composed by 2 LSTM [5]
layers to compress the original input into a lower-dimensional representation. The de-
coder path Z(z) is a mirror of the encoder and aims to reconstruct the original input. In
this latter case f(z, u) is a black-box model.

NON-LINEAR FORCE IDENTIFICATION: CANTILEVER BEAM

A cantilever Euler-Bernoulli beam is investigated in this section with the aim to iden-
tify non-linear forces generated by the presence of a cubic grounded spring attached to
the tip (Figure [2)). This benchmark has been presented and studied in several contribu-
tions [6]] and explored in [/] for the shape reconstruction through VAE and LSTM. The
beam model is described in [/] and is discretized via 2D FE analysis with N, = 15
beam elements for a total number of DoFs n; = 2N, i.e. vertical displacement z and
rotation along y—axis. The system has been simulated via Euler implicit integrator in
a time window of 7" = 100s. The parameter k,,, associated to the non-linear spring, is
sampled in order to create the dataset for different values of non-linearities. The value of
k,, ranges between 0.5% and 1.0% of the traslational stiffness associated to the end node
of the beam and 5 uniformly distributed samples are selected within the range. Differ-
ently from [[7]], the free-dynamic of the beam, i.e. f..;(t) = 0, is simulated by imposing
the first mode shape of the linear beam as initial conditions. The global reduction basis
® is computed by applying POD on the snapshots data of the FOM solution. A total of
5 meaningful modes, i.e. n, = 5 is selected from SVD analysis. A subset of n, = 5
measurements are selected by ensuring the system observability.
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Figure 2. FE model of a clamp-free beam with a grounded spring.

Training scenario: Among the 5 simulated samples, 4 of these are used for the training.
The sample in the middle of the range of £, is used as validation set. In order to aug-
ment the size of the training dataset, a windowing approach with a pre-defined length w,
is applied on the time-series data. In this way, the encoder can learn all the possible com-
bination of initial conditions of the latent model. A parameter o,, € [0, 1] is defined to
tune the overlap between each window: o,, = 1 indicates 100% of overlap which means
that each sequence is shifted about 1 time step; o,, = 0 indicates zero-overlap which
means that each window is sequential to the previous one. For all the experiments, a
learning rate of le™ 3 and batch size equal to 32 are used.

Encoder: in the case of VAE, we tested different combinations by disabling the encoder
and by supposing to know the initial conditions of the latent model from the simulated
data. This test allows to focus on the estimation of the nonlinear term of the system
which can be identified in two scenarios as follows in the next point.

Enable Reduction Forces (ERF): in the case of VAE, the model is assumed to be par-
tially known. The nonlinear forces in a FOM formulation is identified as a function of
x, i.e. f(x). The equations of motion projected on the reduced model will read:

i == fbaseline(za U) + f(X) = fbaseline(27 U) + CI)Tf((I)Z) (3)

The computation of the last term becomes expensive for large systems since it requires
to perform the projection two times at each time step. Hyper-reduction techniques are
available in literature to address this issue but their implementation in the VAE are out
of the scope of the presented article. In a ML perspective, the term ®7 f(®z) can be
approximated with a general function f (z) acting on the reduced system. In the follow-
ing, if ERF is specified, the full projection is performed. Otherwise the approximated
formulation is considered.

The tests performed through VAE and LSTM are listed in Table[llJand compared in Figure
|§|, El andﬂ For all the experiments, the nonlinearities are shown as summation of forces
over all DoFs expressed in the reduced space, i.e. Y .", f(z), where the expression of
f(2) changes accordingly with ERF parameter. MSE and MAE indicate respectively
the Mean Square Error and the Mean Absolute Error averaged on all the DoFs. The
following concluding remarks can be made from the presented experiments:

Comparison between case 1 and 2: the estimation of forces when ERF is set to True
results to be more accurate. However, no significant improvements are observed for this
use case and the accuracy of the approximation with f (z) should be evaluated on a more
complex case for which more iterations might be needed.

Comparison between case 2 and 3: the POD reduction basis gives more accurate re-
construction with respect to a trainable decoder. The lack of accuracy obtained through



TABLE I. PERFORMED EXPERIMENTS. D: FULL-FIELD DISPLACEMENTS. NL:
NONLINEARITIES.

H Model ‘ Encoder ‘ ERF ‘ Decoder ‘ Oow ‘ wy ‘ Trainable param. ‘ Estimation ‘ MSE ‘ MAE

1 VAE Disabled | False D 0.25 | 400 38297 D+NL l4e=% | 6.9¢=3
2 VAE Disabled | True d 0.25 | 400 44082 D+NL 2675 | 3.2¢73
3 VAE Disabled | False MLP 0.25 | 400 43531 D +NL 1.0e=% | 7.2¢73
4 VAE Enabled | False ) 0 200 31641 D +NL 6.0e=4 | 1.5¢72
5 VAE Enabled False (] 1 200 31641 D +NL 2.0e~4 8.0e~3
6 || LSTM-AE | Enabled — MLP 1 200 2281030 D 40e=6 | 4.0e—*
7 || LSTM-AE | Enabled — MLP 1 200 20230 D 7.0e% | 6.0e~3
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Figure 3. Case 1-3 comparison. Top left: MAE and MSE averaged on all the DoFs.
Bottom left: reconstruction of un-measured sensor. Right: estimation of nonlinearities.

MLP might be explained in the lack of physical constraints when the decoder is trainable.

Comparison between case 4 and 5: The architectures compared here include a train-
able encoder as shown in the figure (I)) for estimating initial conditions. The difference
between the two cases consists of the overlap parameter o,, used for sequences equal to
0 and 1 for case 4 and case 5, respectively. From the loss on validation and graphical
trends an overlap equal to one guarantees better generalization performance.

Comparison between case 5 and 6: In the last comparison, the VAE architecture and
an LSTM-AE are compared. The latter model shows a lower loss value in validation but
it is unable to estimate the contribution of nonlinearities. Both the configuration with a
larger and a similar number of parameters (case 6 and case 7) performed better but in the
latter case the validation loss are closer.

PARAMETER ESTIMATION: COMPOSITE DOUBLE CANTILEVER BEAM

In this section, the problem of physical parameter estimation is addressed through
VAE methodology. The model investigated is a Double Cantilever Beam (DCB) speci-
men shown in Figure [6| which is used to study the delamination properties of composite
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Figure 4. Reconstruction of un-measured sensor (left) and MAE and MSE averaged on
all the DoFs (right).
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Figure 5. Reconstruction of un-measured sensor (left) and MAE and MSE averaged on
all the DoFs (rigth).

laminates. The DCB is tested by applying tip displacements in opposite directions such
that the initial crack can propagate. A non-linear behavior is observed in Figure [6} the
model behaves linearly until the crack starts the propagation and the global stiffness of
the model decreases. A simplified way to model the DCB without recurring to non-linear
FE elements i.e. cohesive elements, is shown in Figure[7} node-to-node spring elements
are distributed between the two laminae [§]] and the stiffness of the springs gradually de-
creases over time. In this case of study, the Parametric MOR (PMOR) is adopted for the
computation of the reduction basis ®. The method is the one presented in [9]: the stiff-
ness of the non-linear FE model is sampled and a linear model can be defined for each
sample of stiffness value. In this case, each sample corresponds to a different stage of
degradation of the interface composed by springs. The reduction basis ® is computed by
performing SVD analysis on the concatenated local basis and each local basis is defined
by computing the eigen-value problem. A scheme of the described workflow is shown
in Figure 8] A total of 18 meaningful modes, i.e. n, = 18 and a subset of n, = 12
measurements equally distributed along the lamina length are selected. In the following,
the training scenario and the experiment performed are explained.

Training scenario: The descending curve of Figure [§| has been sampled with 18 data



Figure 6. FE model of the DCB and tip Figure 7. Simplified DCB model with
reaction force. note-to-node springs at the interface.
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Figure 8. Workflow for the computation of the global PMOR reduction basis.

points. The free dynamics corresponding to the first normal mode, i.e. bending, of each
resulting model has been simulated. The windowing approach has been applied on the
time series data by using a length w; of 100 time samples and o,, = 1. The reconstructed
time history of the tip displacement of a model within the range of samples is shown in

Figure [0

Validation: As first attempt to the problem, the interface degradation has been simulated
by interpolating linear solutions over time. The reference tip force vs displacement curve

is shown in Figure |10l and compared with the reconstructed curve obtained through the
trained VAE model.
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CONCLUDING REMARKS

The identification of non-linear forces and parameters has been addressed in this
article by employing data-driven and physics-informed ML approaches. In particular,
LSTM and VAE are compared on a non-linear cantilever beam. Both models provide
a good accuracy on the full-field displacement reconstruction. The chosen architecture
of the LSTM model can not allow the identification of non-linear forces. A trainable
decoder has been tested within the VAE model but a lack of physical constraints did not
allow a good reconstruction and the standard POD approach shows to be the best case
scenario for MOR. A novel approach of VAE for time-dependent parameter degradation
has been also investigated for a DCB model. The methodology allows to reconstruct
non-linear behaviors by interpolating the information given by the dataset of FE linear
models. The investigated case of study is a simplified version of a real DCB model but
the methodology can be generalized for more sophisticated mechanical system.
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