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ABSTRACT

Rapid advances in machine learning make it possible to formulate surrogate models
for complex forced-vibration systems using neural networks. Recently, the continuous-
time state-space neural network (CSNN) has shown great potential and has been drawing
growing attention from the community. In this paper, we propose a generalized CSNN
model for various forced-vibration systems. The CSNN model comprises two sets of
independent neural networks aimed to compute the state derivative and system response,
respectively. Both neural networks adopt linear and nonlinear layers in parallel, aimed
to enhance the CSNN model with the capability to recognize the linear and nonlinear
behaviors of systems. Additionally, the bias options in the CSNN model are all turned
off to improve the stability of the model in the long-term time-series forecast. Integration
on the state derivative is executed using the explicit 4th-order Runge-Kutta method. An
illustrative example is provided in this paper, demonstrating that the CSNN model can
achieve high performance and training efficiency with a few hyper-parameters.

INTRODUCTION

Dynamic systems in engineering fields might be intricate and exhibit significant
nonlinearities [1,2]. Traditional approaches for system identification and evaluation often
require us to gain as much as we can about the physical knowledge of the system. For
example, the physical model of a hydraulic actuator-specimen system should reflect the
dynamics of the servo-valve, actuator, specimen, and the control-structure interaction [3—
5], leading to at least a fifth-order linear or nonlinear model, depending on the complexity
of the specimen [6—8]. Another example is that the memory effect of some materials
could be well interpreted by the fractional derivative order model, while solving it in the
time domain is challenging [9—13]. Such physical models need to be carefully dealt with
using sophisticated mathematical tools and thereby are not attractive to engineers.

The research community has gained great progress in leveraging neural networks
to identify or represent forced-vibration systems. For example, the state-space neural
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network has been developed to represent forced-vibration systems in the discrete-time
domain [14, 15]. Long short-term memory (LSTM) neural network has been adopted
to predict the dynamic responses of nonlinear systems [16, 17]. Convolutional neural
network (CNN) has been used for structural black-box modeling, damage detection, and
loss data reconstruction [18, 19]. Additionally, by adding essential physical informa-
tion of systems to LSTM and CNN, the enhanced neural networks PhyLLSTM [20] and
PhyCNN [21] have been formed for structural seismic response modeling. In the above
studies, the neural networks only function at a particular sampling rate after they are
trained because they were all constructed in the discrete-time domain. Recently, neural
ordinary differential equations (NODE) for the formulation of continuous-time neural
network models have been widely investigated [22,23]. The NODE method works re-
gardless of the change of sampling rate and has exhibited high performance in learning
the unmodeled nonlinear dynamics of systems [24,25]. Furthermore, the continuous-
time state-space neural network (CSNN) has been developed based on the idea of the
NODE method and has shown improved performance and efficiency in the identifica-
tion of nonlinear systems [26,27], therefore has enormous potential for applications in
modeling and response prediction of dynamic systems. How to construct CSNN models
for various forced-vibration systems is an appealing research topic and deserves further
investigation.

In this paper, we establish a generalized CSNN model for forced-vibration systems
in civil engineering. The state vector is introduced in the CSNN model as the hidden
variable. The CSNN model consists of two independent sets of neural networks, labeled
as state and output calculators, which are used to compute the state derivative and output
vectors, respectively. Both the state and output calculators adopt linear and nonlinear
neural network layers in parallel, enabling the CSNN model to capture the linear and
nonlinear components in the responses of the system. The integration operations from
state derivative to state using the explicit 4th-order Runge-Kutta (RK4) method make
the CSNN model independent of the data sampling rate. Additionally, the CSNN model
does not require the input data length to be fixed. With the above features, the CSNN
model is highly flexible and has a strong capability to predict system responses in real
time.

This paper is organized as follows. First, the CSNN modeling methodology is
presented, and the features and potential applications of the CSNN model are discussed
in detail. Then, the performance of the CSNN model is evaluated through a numerical
nonlinear example. Last, some conclusions are drawn.

CONTINUOUS-TIME STATE-SPACE NEURAL NETWORK (CSNN)

In this study, the forced-vibration system with excitations (input vector): u(t) € R™*!
and responses (output vector): y(t) € R™*! is studied. Assuming that the true physical
model of the system is completely unknown (black box), we will utilize the CSNN
architecture to formulate a surrogate model of the system. The dynamic equation of an
unknown system at any time ¢ is constructed using a CSNN cell as shown in Figure 1,
given by

X(1) = Nx [x(1),u(n)],

§(1) = Ny [x(1),u(n)] . (D
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Figure 1. Structure of the CSNN cell at time ¢.
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Figure 2. Illustration of CSNN for time-series modeling of a forced-vibration system.

In Equation (1), x(r) € R™*! is the state vector which is used to learn the system
behavior along the vibration trajectory; X(¢) is the state derivative vector; §(t) € R»*1
is the predicted output vector; N, (-) and N, (-) are two neural networks, defined as the
state calculator and output calculator, respectively. The initial state vector is assumed
to be 0.

Figure 2 provides an illustration of CSNN for time-series modeling of a forced-
vibration system, where

X; = X(ll'), u; = ll(ll'), yi = y(t,-), i=0,1,2,..., (2)

to = 0s, and [to, 1, t2,...] is an ascending time series. The time interval between #; and
ti+1 is defined as At; = ;41 — t;, which might vary with time. All the CSNN cells shown
in Figure 2 share the same model parameters.

The operations and neural network layers used in the state and output calculators are
described in Figure 3. For both the state and output calculators, the state and input vectors
are concatenated first; then fed into a sequence of fully connected nonlinear layers and a
single fully connected linear layer to calculate nonlinear and linear results, respectively;
and finally, the nonlinear and linear results are summed up to generate the state derivative
vector or output vector we need.

The graph representations of the state and output calculators are shown in Figure 4,
where the number of nonlinear layers in the state and output calculators is p and g,
respectively. The hyperbolic tangent function, i.e., Tanh(-), is adopted as the activation

Operations Nonlinear layer Linear layer

in, out,, in; out;
Concatenate —>@—> —>@—>
out, = f (W,in, +b,) out; = Wyin; + by
Co
_:: Py f(-) — activation function W; — weight matrix

Sum W,, — weight matrix b; — bias vector
b,, — bias vector

Figure 3. Operations and layers used in the state and output calculators.
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Figure 4. Graph representations of the state and output calculators (left: state calculator; right:
output calculator).

function in each nonlinear layer. The last nonlinear layer is followed by a fully connected
linear layer to make the output vary in the entire real-number domain. N sets of ob-
served input and output vectors [(ug, yo), (U1, ¥1), ..., (Wy—1, Yn—1)] are used to train
the CSNN model, i.e., to minimize the errors between the predictions [¥¢, ¥1, ..., Yn-1]
and observations [yo, Y1, ..., YN-1].

The RK4 method is used in this paper for the integration of the state vector. The
neural network N, (-) is treated as a general function in implementing the RK4 method.
In addition to the RK4 method, the Euler method is another possible option. Nev-
ertheless, the Euler method is not recommended due to its low precision, particularly
when using relatively large time intervals. Adam algorithm is adopted to optimize the
model parameters during the training process in this study, and alternative algorithms
such as stochastic gradient descent (SGD) algorithm and L-BFGS algorithm can also be
adopted. Furthermore, multiple independent input-output datasets (batched data) can be
considered in the training and prediction processes of the CSNN model.

The effectiveness of a trained CSNN model is not influenced by different data sam-
pling rates/time intervals. And the CSNN model could be formed as a single-time-step
moving-forward model, with one input and one output (one-to-one) at each time point.
Consequently, the CSNN model can be used to predict the system responses in real time
regardless of the input data length. Additionally, compared to existing CSNN models
reported in the literature, the CSNN model proposed in this paper has the following
modifications which are made specifically for the modeling of forced-vibration systems
in civil engineering:

1. The hyper-parameters of existing CSNN models included both weights and biases,
while all the bias options in the state and output calculators of the proposed CSNN
model are turned off. This modification is based on the fact that almost all forced-
vibration systems in civil engineering are dissipative systems without drift. Turning off
the bias options is a straightforward way to satisfy this requirement. The authors have
tried to train the CSNN models with the bias options turned off for the illustrative
examples that will be presented later and found that better performance and faster
training speed were achieved compared to the situation where the bias options were
turned on.

2. In literature, the state vectors of CSNN models normally had physical meanings,
and their initial values were carefully handled. However, we do not assign physical
meanings to the state vector of the proposed CSNN model, and the state vector is
merely treated as the hidden variable to process data-driven modeling of forced-
vibration systems. To guarantee that zero input series generate zero output series, the
initial state vector is assumed to be zero in this paper.

3. Nonlinear neural network layers were usually used alone in previous studies since



they are very powerful at fitting the training datasets, and it appeared unnecessary
to adopt linear layers. However, this strategy normally results in a large number of
hyper-parameters and might be inefficient for time-series problems. Instead of using
nonlinear layers alone, the proposed CSNN model adopts both linear and nonlinear
neural network layers, enabling the model to capture and balance linear and nonlinear
components in the system responses.

The features listed above make the CSNN model workable for various problems
within the domain of civil engineering such as system modeling, identification, and
structural health monitoring.

ILLUSTRATIVE EXAMPLE

A single degree-of-freedom (DOF) nonlinear system subjected to acceleration exci-
tations is investigated in this illustrative example. The nonlinear system is expressed as
follows:

m (1) +cy(1) + kiy(1) + kay* (1) = —miig (1), (3)
where the parameter values are mass m = 1 kg, damping coefficient ¢ = 1 Ns/m, linear
stiffness coefficient k; = 20 N/m, and nonlinear stiffness coefficient k, = 200N/ m3 [21].
The database contains 99 independent seismic acceleration histories (iig(f)) and the
corresponding system displacement responses (y(¢)). The first 10 datasets labeled as
cases 1-10 are used for training and the rest (cases 11-99) are used for testing. Each input
sequence is sampled at 20 Hz (At = 0.05 s) with a time duration of 50 seconds, leading
to 1,001 data points. The PhyCNN model has the following limitations. It is executed
at the specific time interval Ar = 0.05s and does not work for other time intervals.
Additionally, it takes all 1,001 acceleration data points in 50 seconds as the single input
vector to calculate the 1,001-point system responses. The input sequence with a different
time duration must be cut off or padded to be a sequence of 50 seconds. The proposed
CSNN model is not subject to these limitations. It is a one-to-one neural network model,
and a well-trained CSNN model can be used to predict the system response with different
time intervals and time durations.

The PhyCNN model consists of 5 convolution layers, 5 rectified linear unit (ReLLU)
activation functions (following at the end of each convolution layer), and finally, 3 fully
connected linear layers. Each convolution layer has 64 filters and 50 kernels. The
parameter configuration of the CSNN model are described as follows. Two hidden states
(n, = 2) are used. The state calculator N,(-) includes two nonlinear layers (p = 2) with
two neurons (ng = 2) in each layer, and the output calculator N, (-) includes one nonlinear
layer (g = 1) with one neuron (n, = 1). As a result, the CSNN model has significantly
fewer parameters than the PhyCNN model.

The Pearson corr. between the ground truth and model prediction of the system
response for the 99 cases are displayed in Figure 5. The PhyCNN model fits the training
cases well except for case 8 and case 10. However, The PhyCNN model exhibits
inconsistent performance for the testing cases, where the minimum Pearson corr. is
0.57781 (case 94). In contrast, the CSNN model achieves good performance for both
training and testing cases. Therefore, the CSNN model is more stable than the PhyCNN
model for this nonlinear illustrative example. The ground truth and model prediction of
the displacement responses for cases 30 and 94 are shown in Figure 6. It is apparent from
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Figure 5. Pearson corr. between the ground truth and model prediction of the system response
for the 99 cases of illustrative example 2.
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Figure 6. Ground truth and model prediction of the displacement responses for cases 29, 30, 65,
and 94 of illustrative example 2.

Figure 6 that the CSNN model predicts the system responses better than the PhyCNN
model.

CONCLUDING REMARKS

This paper presented the CSNN architecture to elicit data-driven surrogate models
for forced-vibration systems. The CSNN model includes state and output calculators,
which are used to compute the state derivative and output vectors, respectively. Both
state and output calculators consist of several nonlinear neural network layers and a linear
neural network layer in parallel. The RK4 method is utilized to update the state vector
and calculate the output vector. The execution of the CSNN model does not require the
time interval and time duration of the input data to be fixed, therefore is highly flexible
and adaptive.

An Illustrative example compares the CSNN model with the PhyCNN model for
the response prediction of a highly nonlinear numerical system. The results show that



the CSNN model achieves better and more stable performance than the PhyCNN model.
Based on the current work, we believe that the proposed CSNN model is highly promising
for engineering practice.
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