
ABSTRACT 

‘Uncertainty law’ aims at closed-form asymptotic formulas for the relationship 
between the identification uncertainties of modal properties (e.g., natural frequency, 
damping ratio) and test configuration (e.g., number and location of shakers/sensors, 
noise level, data duration). Focusing on the case of experimental modal analysis with 
multiple-input and multiple-output, the uncertainty laws of modal parameters for well- 
separated modes are proposed in the paper. Asymptotic expressions for the posterior 
coefficient of variation of modal parameters are derived via the Fisher information 
matrix for long data and small damping scenarios. Assumptions and theory are validated 
using synthetic test data. Governing factors motivated by the theory are investigated, 
including the equivalent modal signal-to-noise ratio and data duration. The developed 
uncertainty laws provide a scientific basis for planning and managing identification 
uncertainties in vibration tests with known multiple-inputs 

INTRODUCTION 

Modal parameters (e.g., frequency, damping ratio and mode shape) play a key role 
in the vibration-based structural health monitoring. They can be identified from the 
recorded structural vibration responses with known input force (i.e., experimental modal 
analysis, EMA) or without known input force (i.e., operational modal analysis, OMA). 
No matter known or unknown the input force, the identified modal parameters are 
subject to uncertainties due to measurement error, modeling error and statistical error. 
Knowing the identification uncertainty not only gives us the confidence on the 
identification, but also allows us to make more reliable decisions, e.g., on damage 
detection and localization. 

Focusing on the quantitative calculation of identification uncertainties, various 
methods have been proposed in the past decades, mainly from the perspective of 
Bayesian approach [1,2] and frequentist approach [3,4]. Knowing the identification 
uncertainty is valuable. However, the identification uncertainties are represented by 
some numerical numbers (e.g., variance), which does not provide any insight into what 
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 factors it depends on, not to mention any solutions that would help to reduce the 

uncertainty. To address this problem, ‘uncertainty laws’ has been recently developed in 

OMA, aiming at understanding and managing the identification uncertainties of modal 

properties. Rather than numerical numbers, the uncertainties laws represent the 

posterior coefficient of variation (c.o.v.) of modal parameters by simple analytical 

expressions, directly showing how the test configuration influences the identification 

uncertainty of modal parameters. In particular, References [5] and [6] present 

uncertainty laws using single-setup  and multi-setup FFT data, respectively. Reference 

[7] illustrates an application of uncertainty laws by proposing metrics to quantify a 

multi-setup configuration and optimize it accordingly. 

In this paper, the uncertainty law for modal identification with known multiple-input 

multiple-output (MIMO) is developed, i.e., from a perspective of EMA. First, a 

Bayesian formulation of MIMO modal identification is presented in Section 2, which 

provides the probabilistic model for the uncertainty law. The main assumptions and key 

results of uncertainty laws are then discussed in Section 3. A synthetic example is 

applied in Section 4 for verification of the proposed uncertainties and investigating the 

key factors. A brief conclusion is finally provided in Section 5. 

 

 

BAYESIAN MIMO MODAL IDENTIFICATION 

 

Without loss of generality, let {𝒚̂̈𝑗 ∈ ℝ𝑛: 𝑗 = 0,1, … , 𝑁 − 1} be the acceleration 

time history at 𝑛  measured degrees of freedom (DoFs) of a structure and 

{𝒑𝑗 ∈ ℝ𝑚: 𝑗 = 0,1, … , 𝑁 − 1} be the input force vector measured at 𝑚 DoFs, where 𝑁 

is the number of samples per data channel. The scaled FFT {𝒀̂𝑘} of {𝒙̂̈𝑗} is defined as  

𝒀̂𝑘 = √
Δ𝑡

𝑁
∑ 𝒚̂̈𝑗 exp (−

𝐢2𝜋𝑗𝑘

𝑁
)

𝑁−1

𝑗=0

 (𝑘 = 1, … , 𝑁) (1) 

where 𝐢2 = −1 and Δ𝑡 (sec) is the sampling interval. For 𝑘 ≤ 𝑁𝑞, 𝒀̂𝑘 corresponds to 

the frequency f𝑘 = 𝑘/𝑁Δ𝑡 (Hz), where 𝑁𝑞 = int[𝑁/2] + 1 (int[⋅] denotes the integer 

part). Similarly, we have the scaled FFT of input force as 𝑷𝑘. 

Consider identifying a classically damped and well-separated mode on a selected 

frequency band, the scaled FFT of data within the band is modeled as  

𝒀̂𝑘 = 𝝋𝜂̈𝑘 + 𝜺𝑘 (2) 

where 𝝋 is the partial mode shape confined to measured DoFs, 𝜺𝑘 is the scaled FFT of 

error (e.g., measurement noise and modeling error), and 𝜂̈𝑘 is the scaled FFT of the 

modal response. It is related with the input force 𝑷𝑘 as 

𝜂̈𝑘 = ℎ𝑘𝜞T𝑷𝑘 (3) 

where the vector 𝜞 = [𝛤1, … , 𝛤𝑚]𝑇 ∈ ℝ𝑚 is the modal participation factor (MPF); ℎ𝑘 is 

the frequency response function given by 

ℎ𝑘 = [(1 − 𝛽𝑘
2) − 𝐢(2𝜁𝛽𝑘)]−1;   𝛽𝑘 = 𝑓/f𝑘 (4) 

with 𝑓 and 𝜁 being the modal frequency and damping ratio, respectively. Substituting 

Eq. (3) to Eq. (2) gives 

𝒀̂𝑘 = 𝝋ℎ𝑘𝜞T𝑷𝑘 + 𝜺𝑘 (5) 

which directly builds the input-output relationship.  



Assuming that the error 𝜺𝑘 follows a complex normal distribution with zero mean 

and covariance matrix (a.k.a. power spectral density, PSD) of 𝑆𝑒𝑰𝑛 , i.e., 

𝜺𝑘~CN(0, 𝑆𝑒𝑰𝑛) , and 𝜺𝑗  is independent of 𝜺𝑘  for 𝑗 ≠ 𝑘 , it then follows that 

𝒀̂𝑘~CN(𝝋ℎ𝑘𝜞T𝑷𝑘, 𝑆𝑒𝑰𝑛). Here, the input force 𝑷𝑘 is assumed to be known without 

uncertainty. Given the measurement {𝒀̂𝑘, 𝑘 = 1,2, … , 𝑁𝑓}, where 𝑁𝑓 is the number of 

FFT points within the selected frequency band, one has the negative log-likelihood 

function (NLLF): 

𝐿(𝜽) = 𝑛𝑁𝑓 ln 𝜋 + 𝑛𝑁𝑓 ln 𝑆𝑒 + 𝑆𝑒
−1 ∑ [𝒀̂𝑘 − 𝝋ℎ𝑘𝜞T𝑷𝑘]

∗
[𝒀̂𝑘 − 𝝋ℎ𝑘𝜞T𝑷𝑘]

𝑘
(6) 

Assuming a uniform prior distribution for unknown parameters 𝜽 = {𝑓, 𝜁, 𝝋, 𝜞, 𝑆𝑒}, 

the posterior probability density function (PDF) can be obtained according to the Bayes’ 

theorem 

𝑝(𝜽|{𝒀̂𝑘}) ∝ 𝑝({𝒀̂𝑘}|𝜽) = 𝑒−𝐿(𝜽) (7) 

Note that one can obtain identical NLLFs when multiplying 𝝋 by a constant 𝑐 and 

then dividing it by 𝜞, because 𝝋𝜞T = (𝑐𝝋)(𝜞T/𝑐), which indicates that the formulated 

problem is actually unidentifiable. To make the parameters (locally) identifiable, a norm 

constraint of 𝝋T𝝋 = 1 is further introduced here. The analytical form of posterior PDF 

𝑝(𝜽|{𝒀̂𝑘}) does not exist due to the complicated nature of NLLF. With sufficient data, 

Laplace approximation is adopted, i.e., fitting the posterior PDF with a multivariate 

normal distribution, whose mean vector and covariance matrix are, respectively, given 

by 

𝜽̂ = arg min
𝜽

 𝐿(𝜽);   𝜮̂ = [
𝜕2𝐿(𝜽)

𝜕𝜽𝜕𝜽T
|

𝜽=𝜽̂

]

−1

(8) 

where the operator ‘arg min
𝜽

 [∙]’ denotes the value of 𝜽 that minimizes NLLF 𝐿(𝜽). 

The mean 𝜽̂  is often called the most probable value (MPV) in Bayesian modal 

identification. The covariance matrix 𝜮̂ is the inverse of the Hessian of the NLLF at the 

MPV, which quantifies the remaining uncertainties of modal parameters. For simplicity, 

the above Bayesian MIMO modal identification algorithm will be referred as 

‘BAYEMA’ (Bayesian experimental modal analysis) in the paper. 

 

OVERVIEW OF UNCERTAINTY LAWS 

 

Within the context of Bayesian MIMO modal identification, the mode of interest is 

assumed to be well-separated from others and with natural frequency 𝑓  (in Hz), 

damping ratio 𝜁 and normalized mode shape 𝝋. The structure is subject to an input force 

vector 𝑷𝑘 with an MPF 𝜞. The selected frequency band for dentification is assumed to 

be 𝑓(1 ± 𝜅𝜁), where 𝜅 is a dimensionless bandwidth factor. Assuming the sampling 

duration is 𝑇𝑑, one has the effective data length 𝑁𝑐 = 𝑇𝑑𝑓 and the number of FFT points 

𝑁𝑓 = 2𝜅𝜁𝑓𝑇𝑑 within the selected frequency band. 

Based on the above assumptions, it can be shown that for long data 𝑁𝑓 ≫ 1 and 

small damping 𝜁 ≪ 1, the (squared) posterior coefficient of variation (c.o.v. = standard 

deviation/mean) 𝛿𝑥
2 of the modal parameter 𝑥 is asymptotically given by 

𝛿𝑥
2~𝛿𝑥,𝑚𝑖𝑚𝑜

2 = 𝛿𝑥0
2

𝑏𝑥

𝛾
       for 𝑁𝑓 ≫ 1, 𝜁 ≪ 1 (9) 



where 𝛿𝑥,𝑚𝑖𝑛𝑜
2  is referred as the uncertainty laws of MIMO modal identification. The 

operator ‘~’ denotes that the ratio of the two sides tends to 1 under the asymptotic 

conditions. The corresponding expressions of 𝛿𝑥0
2  and 𝑏𝑥 are shown in Table 1. Here, 

𝛿𝑥0
2  (except for mode shape and modal participation factor) is the ‘zeroth order law’ of 

OMA [8], and 𝑏𝑥 is defined to be the ‘known-input factor’, showing how the squared 

c.o.v. reduces with known multiple-input. 

𝛾 =
𝑆𝛤

4𝑆𝑒𝜁2
(10) 

is defined to be the (dimensionless) ‘modal s/n ratio’, where 𝑆𝛤 = 𝜞TRe(𝑺)𝜞 is the 

modal force PSD and 

𝑺 = 𝑁𝑓
−1  ∑ 𝑷𝑘𝑷𝑘

∗

𝑁𝑓

(11) 

is the PSD of the input force 𝑷𝑘. The input force PSD 𝑺 is assumed to be constant within 

the selected frequency band. 

The expressions of 𝛿𝑥0
2  and 𝑏𝑥 for different parameters are summarized in Table I. 

The uncertainty laws capture the leading order behavior of posterior c.o.v.s of modal 

parameters under asymptotic conditions, i.e., 𝛿𝑥
2/𝛿𝑥,𝑚𝑖𝑚𝑜

2 → 1 as for 𝑁𝑓 ≫ 1 and 𝜁 ≪

1. The derivation take advantages of long data asymptotics, small damping asymptotics 

and asymptotic decoupling [8]. Due to the space limit, the detailed derivation of 

uncertainty laws shown in Table 1 is ignored, but an empirical verification is provided 

in the next section. 

 
TABLE I. KEY RESULTS OF UNCERTAINTY LAWS 

Parameter 𝒙 
zeroth order 

law 𝜹𝒙𝟎
𝟐  * 

Data length factor 𝑩𝒙(𝜿) Known-input factor 𝒃𝒙(𝜿) 

Frequency 𝑓 
𝜁

2𝜋𝑁𝑐𝐵𝑓

 
2

𝜋
(tan−1 𝜅 −

𝜅

𝜅2 + 1
) 

2 (tan−1 𝜅 −
𝜅

𝜅2 + 1
)

tan−1 𝜅 +
𝜅

𝜅2 + 1

 

Damping 𝜁 
1

2𝜋𝜁𝑁𝑐𝐵𝜁

 

2

𝜋
[tan−1 𝜅 +

𝜅

𝜅2 + 1

−
2(tan−1 𝜅)2

𝜅
] 

4 tan−1 𝜅 [tan−1 𝜅 +
𝜅

𝜅2 + 1
−

2(tan−1 𝜅)2

𝜅
]

(tan−1 𝜅 +
𝜅

𝜅2 + 1
) (tan−1 𝜅 −

𝜅
𝜅2 + 1

)
 

Mode shape 

𝝋̅ 

𝑛 − 1

2𝜋𝜁𝑁𝑐𝐵𝜑̅

 
2

𝜋
tan−1 𝜅 1 

Modal 

participation 

factor 𝛤𝑖  

1

2𝜋𝜁𝑁𝑐𝐵𝛤

 
2

𝜋
tan−1 𝜅 

𝑆𝛤

𝛤𝑖
2𝑃𝑖𝑖

−1  +
𝑡𝑎𝑛−1 𝜅 +

𝜅
𝜅2 + 1

𝑡𝑎𝑛−1 𝜅 −
𝜅

𝜅2 + 1

 

Channel 

noise 

PSD 𝑆𝑒 

1

(𝑛 − 1)𝑁𝑓𝐵𝑆𝑒

 1 
𝑛 − 1

𝑛
𝛾 

Note: Symbols 𝑓, 𝜁, 𝝋, 𝜞, 𝑆𝑒 here denote the ‘true’ value of modal properties rather than the variable 

in the likelihood function. 

Effective data length 𝑁𝑐 = data length/natural period; 𝛾 = 𝑆𝛤/4𝑆𝑒𝜁2 is the modal s/n ratio; 

Mode shape c.o.v. is defined as the square root sum of eigenvalues of the covariance matrix of 𝝋; 

𝑷 = Re(𝑺)−1 and 𝑃𝑖𝑖  represents the correponding 𝑖-th diagonal entry; 

The selected band for modal identification is 𝑓(1 ± 𝜅𝜁) where 𝜅 is the bandwidth factor. 

* 𝛿𝑥0
2  coincides with the ‘zeroth order law’ of OMA when 𝑥 is 𝑓, 𝜁 or 𝑆𝑒. 

 

 



EMPIRICAL VERIFICATION 

 

An example is presented with synthetic data to verify the proposed uncertainty laws. 

The considered structure is a three-story shear-type building, as depicted in Figure 1(a). 

The building is of 600 mm high with each floor measuring 200 mm × 100 mm × 8 mm. 

The first two modes with 1% damping ratio have the natural frequencies of 1.976 Hz 

and 2.617 Hz, respectively. Two input forces have been applied on the top floor along 

the weak and strong direction. They are modeled by stationary Gaussian white noise 

with identical PSD but with varying coherence. Acceleration time history along the two 

directions at each node is recorded for investigation, yielding the total number of 

measured DoFs is 4 × 2 × 3 = 24 . Synthetic acceleration data is generated at a 

sampling rate of 100 Hz. The duration of measured acceleration is 600 sec, which covers 

10 sec before the excitations are applied, 580 sec pseudorandom excitation, and 10 sec 

free vibration after the excitations are applied. The measurement noise is modeled by a 

stationary Gaussian white noise process with a PSD of 𝑆𝑒 = 1 × 10−6 g2/Hz. In this 

example, it is assumed the external mass is 1 kg.  

Two cases are investigated with a brief description summarized in Table II. Case 1 

shows the effect of modal s/n ratio on identification uncertainty due to different 

magnitudes of excitations. Case 2 shows the effect of effective data length 

(measurement duration/natural period). The data generated in both cases is used for a 

direct verification of uncertainty laws. The PSD of input forces and root singular value 

(SV) spectrum of output responses are shown in Figure 1(c)~(d) for a typical realization. 

 
 

 
 

a) Test configuration 

(arrows: excitations; dot: biaxial accelerometer ) 

 

b) Identified results, Mode TY1, Mode R1 

  
c) Typical PSD of input d) Typical Root SV of output 

 

Figure 1. three-story shear-type building, synthetic data 

 

 



TABLE II .TEST CONFIGURATION, SYNTHETIC DATA 

Case ID 
Force PSD 

(× 𝟏𝟎−𝟔 𝐍𝟐/𝐇𝐳) 
Data duration (sec) 

1 𝑺 = [
𝛼 0
0 𝛼

] with 𝛼 = 0.1: 0.1: 1 600 

2 𝑺 = [
1 0
0 1

] From 60 to 1140 with a interval of 120 

 

The initial guesses of frequencies and bands for modal identification are indicated 

with circles and brackets in the SV spectrum. The BAYEMA algorithm is then applied 

to identify the first two vibration modes. Identified results are illustrated in Figure 1(b). 

Natural frequencies and damping ratios are depicted with their uncertainties in 

parentheses. 

 

Direct Verification 

 

The derived uncertainty laws are first verified by comparing the identification 

uncertainties calculated by BAYEMA predicted by the corresponding uncertainty laws, 

as shown in Figure 2. It is observed that all markers are distributed around the diagonal 

lines, indicating a good agreement between BAYEMA and uncertainty laws. One can 

see the developed uncertainty laws can capture the identification uncertainty of modal 

parameters with simple analytical expressions. It should be noted that for Mode TY1, 

which is the first transverse mode along the weak direction, modal participation factor 

along the strong direction is purely zero. Therefore, its coefficient of variation does not 

exist and is not considered here. 
 

Effect of Modal S/N Ratio 

 

For Case 1, the effect of modal s/n ratio on identification uncertainty is investigated, 

which is implemented by varying the magnitude of input force. In addition to the 

proposed uncertainty law, results of uncertainty law of OMA [5] and BAYOMA [9] are 

also provided to illustrate the benefit of knowing the input force. The resulting posterior 

c.o.v.s of the identified modal parameters are shown in Figure 3, where circle and cross 

markers represent results of BAYEMA and BAYOMA respectively, while dashed and 

solid lines show the value predicted by uncertainty laws for known and unknown-input 

cases, respectively. 

 

  
a) Mode TY1 a) Mode R1 

 

Figure 2.  Posterior c.o.v. calculated by BAYEMA versus uncertainty laws 



 
 

Figure 3. Effect of modal s/n ratio on posterior c.o.v. of modal parameters; Mode R1. 

(Circle: identified value with known input; Cross: identified value with unknown input; Solid line: 

uncertainty laws with known input; Dashed line: uncertainty laws with unknown input) 
 

As depicted in Figure 3, the posterior c.o.v.s of the identified modal parameters 

decrease as 𝛾 increases regardless of whether the input is known or not. Compared to 

unknown-input case, the identification uncertainty in the known-input case is mainly 

governed by channel noise, which can be reduced effectively by increasing 𝛾 and finally 

it could be close to zero for a large enough value of 𝛾.  
 

Effect of Data Length 
 

We next investigate the influence of effective data length 𝑁𝑐. From the uncertainty 

law formula, it is observed that with the increase of 𝑁𝑐, the posterior c.o.v.s decrease. 

In this context, extending the test duration is one of simple ways to reduce the 

identification uncertainty. Verified by Figure 4, the c.o.v.s decrease in a vanishing 

manner with increasing 𝑁𝑐. 
 

  
a) Mode TY1 b) Mode R1 

 

Figure 4.  Effect of effective data length on posterior c.o.v. of modal parameters. 

(Marker: identified value with known input; Dashed line: uncertainty laws with known input) 



CONCLUSION 
 

This paper develops the closed-form asymptotic expressions, i.e., uncertainty laws, 

for the identification uncertainty of modal parameters with known broadband input. 

They are derived for a well-separated mode with assumptions of small damping ratio 

and long data. Synthetic data are used to verify the accuracy of uncertainties, and a 

parametric study is conducted to investigate the key factors. Key results of uncertainty 

laws show the beauty of nature, i.e., remarkably simple and insightful expressions 

dominate the identification uncertainty of modal parameters. The derived uncertainty 

laws allow us to understand how the identification uncertainty depends on test 

configuration, and thus provides an opportunity to optimize the test configuration for a 

more precise estimation.  
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