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ABSTRACT

‘Uncertainty law’ aims at closed-form asymptotic formulas for the relationship
between the identification uncertainties of modal properties (e.g., natural frequency,
damping ratio) and test configuration (e.g., number and location of shakers/sensors,
noise level, data duration). Focusing on the case of experimental modal analysis with
multiple-input and multiple-output, the uncertainty laws of modal parameters for well-
separated modes are proposed in the paper. Asymptotic expressions for the posterior
coefficient of variation of modal parameters are derived via the Fisher information
matrix for long data and small damping scenarios. Assumptions and theory are validated
using synthetic test data. Governing factors motivated by the theory are investigated,
including the equivalent modal signal-to-noise ratio and data duration. The developed
uncertainty laws provide a scientific basis for planning and managing identification
uncertainties in vibration tests with known multiple-inputs

INTRODUCTION

Modal parameters (e.g., frequency, damping ratio and mode shape) play a key role
in the vibration-based structural health monitoring. They can be identified from the
recorded structural vibration responses with known input force (i.e., experimental modal
analysis, EMA) or without known input force (i.e., operational modal analysis, OMA).
No matter known or unknown the input force, the identified modal parameters are
subject to uncertainties due to measurement error, modeling error and statistical error.
Knowing the identification uncertainty not only gives us the confidence on the
identification, but also allows us to make more reliable decisions, e.g., on damage
detection and localization.

Focusing on the quantitative calculation of identification uncertainties, various
methods have been proposed in the past decades, mainly from the perspective of
Bayesian approach [1,2] and frequentist approach [3,4]. Knowing the identification
uncertainty is valuable. However, the identification uncertainties are represented by
some numerical numbers (e.g., variance), which does not provide any insight into what
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factors it depends on, not to mention any solutions that would help to reduce the
uncertainty. To address this problem, ‘uncertainty laws’ has been recently developed in
OMA, aiming at understanding and managing the identification uncertainties of modal
properties. Rather than numerical numbers, the uncertainties laws represent the
posterior coefficient of variation (c.0.v.) of modal parameters by simple analytical
expressions, directly showing how the test configuration influences the identification
uncertainty of modal parameters. In particular, References [5] and [6] present
uncertainty laws using single-setup and multi-setup FFT data, respectively. Reference
[7] illustrates an application of uncertainty laws by proposing metrics to quantify a
multi-setup configuration and optimize it accordingly.

In this paper, the uncertainty law for modal identification with known multiple-input
multiple-output (MIMO) is developed, i.e., from a perspective of EMA. First, a
Bayesian formulation of MIMO modal identification is presented in Section 2, which
provides the probabilistic model for the uncertainty law. The main assumptions and key
results of uncertainty laws are then discussed in Section 3. A synthetic example is
applied in Section 4 for verification of the proposed uncertainties and investigating the
key factors. A brief conclusion is finally provided in Section 5.

BAYESIAN MIMO MODAL IDENTIFICATION

Without loss of generality, let {y; € R®:j = 0,1,...,N — 1} be the acceleration
time history at n measured degrees of freedom (DoFs) of a structure and
{p; e R™:j =0,1,.., N — 1} be the input force vector measured at m DoFs, where N
is the number of samples per data channel. The scaled FFT {¥, } of {X;} is defined as

e i27jk
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where i = —1 and At (sec) is the sampling interval. For k < N, Y, corresponds to
the frequency f,, = k/NAt (Hz), where N, = int[N/2] + 1 (int[-] denotes the integer
part). Similarly, we have the scaled FFT of input force as P,.
Consider identifying a classically damped and well-separated mode on a selected
frequency band, the scaled FFT of data within the band is modeled as
Yy = @ijy + & (2)
where ¢ is the partial mode shape confined to measured DoFs, € is the scaled FFT of
error (e.g., measurement noise and modeling error), and 7j, is the scaled FFT of the
modal response. It is related with the input force P, as
fie = hy T TP k 3)
where the vector I' = [I3, ..., I;,,]T € R™ is the modal participation factor (MPF); hy, is
the frequency response function given by
he = [(1 = B7) —1(2¢BI™Y Bi = f/fi (4)
with f and ¢ being the modal frequency and damping ratio, respectively. Substituting
Eqg. (3) to Eq. (2) gives

Y = @ TP, + g 5)
which directly builds the input-output relationship.



Assuming that the error &, follows a complex normal distribution with zero mean
and covariance matrix (a.k.a. power spectral density, PSD) of S.I,, , i.e.,
£,~CN(0,S.I,) , and ¢; is independent of g, for j # k, it then follows that
Y. ~CN(@h,I'"P,,S,I,,). Here, the input force P,, is assumed to be known without
uncertainty. Given the measurement {¥,, k = 1,2, ..., Ny}, where N, is the number of
FFT points within the selected frequency band, one has the negative log-likelihood
function (NLLF):

Mm=nmmn+mwm&+$4zﬂﬂf¢medﬁa—¢mﬂPd(@
k

Assuming a uniform prior distribution for unknown parameters @ = {f,{, @, T, S.},
the posterior probability density function (PDF) can be obtained according to the Bayes’

theorem
p(0]{¥}) < p({V}|0) = e (7)
Note that one can obtain identical NLLFs when multiplying ¢ by a constant ¢ and
then dividing it by I', because @I'T = (c¢)(I'" /c), which indicates that the formulated
problem is actually unidentifiable. To make the parameters (locally) identifiable, a norm
constraint of ¢T¢ = 1 is further introduced here. The analytical form of posterior PDF
p(0|{Y+}) does not exist due to the complicated nature of NLLF. With sufficient data,
Laplace approximation is adopted, i.e., fitting the posterior PDF with a multivariate
normal distribution, whose mean vector and covariance matrix are, respectively, given
by
L] 1
— 8
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where the operator ‘arg min [-]” denotes the value of @ that minimizes NLLF L(@).
0

0 =argmin L(0); % = [
6

The mean 8 is often called the most probable value (MPV) in Bayesian modal
identification. The covariance matrix Z is the inverse of the Hessian of the NLLF at the
MPV, which quantifies the remaining uncertainties of modal parameters. For simplicity,
the above Bayesian MIMO modal identification algorithm will be referred as
‘BAYEMA’ (Bayesian experimental modal analysis) in the paper.

OVERVIEW OF UNCERTAINTY LAWS

Within the context of Bayesian MIMO modal identification, the mode of interest is
assumed to be well-separated from others and with natural frequency f (in Hz),
damping ratio ¢ and normalized mode shape ¢. The structure is subject to an input force
vector P;, with an MPF I'. The selected frequency band for dentification is assumed to
be f(1 £ x{), where k is a dimensionless bandwidth factor. Assuming the sampling
duration is T4, one has the effective data length N. = T,; f and the number of FFT points
Ny = 2K{ f T, within the selected frequency band.

Based on the above assumptions, it can be shown that for long data N >> 1 and
small damping ¢ « 1, the (squared) posterior coefficient of variation (c.0.v. = standard
deviation/mean) 62 of the modal parameter x is asymptotically given by

b
52~52 =gff for Nf > 1,{ < 1 9
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where 87 ,.in, 1S referred as the uncertainty laws of MIMO modal identification. The
operator ‘~’ denotes that the ratio of the two sides tends to 1 under the asymptotic
conditions. The corresponding expressions of 62, and b, are shown in Table 1. Here,
52, (except for mode shape and modal participation factor) is the ‘zeroth order law’ of
OMA [8], and b,, is defined to be the ‘known-input factor’, showing how the squared
c.0.v. reduces with known multiple-input.
Sr

V= 15,02 (10)
is defined to be the (dimensionless) ‘modal s/n ratio’, where S = I'"Re(S)T is the
modal force PSD and

S =Nt P,P; (11)
Ny
is the PSD of the input force Pj,. The input force PSD S is assumed to be constant within
the selected frequency band.

The expressions of 6%, and b, for different parameters are summarized in Table I.
The uncertainty laws capture the leading order behavior of posterior c.0.v.s of modal
parameters under asymptotic conditions, i.e., 52 /6§,mim0 — las for Ny » 1and { <
1. The derivation take advantages of long data asymptotics, small damping asymptotics
and asymptotic decoupling [8]. Due to the space limit, the detailed derivation of
uncertainty laws shown in Table 1 is ignored, but an empirical verification is provided
in the next section.

TABLE I. KEY RESULTS OF UNCERTAINTY LAWS

zeroth order .
Parameter x law 82, * Data length factor B, (k) Known-input factor b, (k)
x0
_ K
¢ 2 K 2(tan "tk — 55—
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Note: Symbols f,{, @, I, S, here denote the ‘true’ value of modal properties rather than the variable
in the likelihood function.
Effective data length N, = data length/natural period; y = Sy/4S,{? is the modal s/n ratio;

Mode shape c.o.v. is defined as the square root sum of eigenvalues of the covariance matrix of ¢;
P = Re(S) ™! and P;; represents the correponding i-th diagonal entry;
The selected band for modal identification is f (1 * x{) where k is the bandwidth factor.

* §2, coincides with the ‘zeroth order law’ of OMA when x is f, { or S,.



EMPIRICAL VERIFICATION

An example is presented with synthetic data to verify the proposed uncertainty laws.
The considered structure is a three-story shear-type building, as depicted in Figure 1(a).
The building is of 600 mm high with each floor measuring 200 mm <100 mm =<8 mm.
The first two modes with 1% damping ratio have the natural frequencies of 1.976 Hz
and 2.617 Hz, respectively. Two input forces have been applied on the top floor along
the weak and strong direction. They are modeled by stationary Gaussian white noise
with identical PSD but with varying coherence. Acceleration time history along the two
directions at each node is recorded for investigation, yielding the total number of
measured DoFs is 4 x 2 X 3 = 24. Synthetic acceleration data is generated at a
sampling rate of 100 Hz. The duration of measured acceleration is 600 sec, which covers
10 sec before the excitations are applied, 580 sec pseudorandom excitation, and 10 sec
free vibration after the excitations are applied. The measurement noise is modeled by a
stationary Gaussian white noise process with a PSD of S, = 1 x 1076 g2/Hz. In this
example, it is assumed the external mass is 1 kg.

Two cases are investigated with a brief description summarized in Table II. Case 1
shows the effect of modal s/n ratio on identification uncertainty due to different
magnitudes of excitations. Case 2 shows the effect of effective data length
(measurement duration/natural period). The data generated in both cases is used for a
direct verification of uncertainty laws. The PSD of input forces and root singular value
(SV) spectrum of output responses are shown in Figure 1(c)~(d) for a typical realization.
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Figure 1. three-story shear-type building, synthetic data



TABLE Il . TEST CONFIGURATION, SYNTHETIC DATA

Force PSD .
Case ID (x 1075 N2/Hz) Data duration (sec)
1 S = [“ O] with @ = 0.1:0.1: 1 600
0 «a
2 S = [(1) (1) From 60 to 1140 with a interval of 120

The initial guesses of frequencies and bands for modal identification are indicated
with circles and brackets in the SV spectrum. The BAYEMA algorithm is then applied
to identify the first two vibration modes. Identified results are illustrated in Figure 1(b).

Natural frequencies and damping ratios are depicted with their uncertainties in
parentheses.

Direct Verification

The derived uncertainty laws are first verified by comparing the identification
uncertainties calculated by BAYEMA predicted by the corresponding uncertainty laws,
as shown in Figure 2. It is observed that all markers are distributed around the diagonal
lines, indicating a good agreement between BAYEMA and uncertainty laws. One can
see the developed uncertainty laws can capture the identification uncertainty of modal
parameters with simple analytical expressions. It should be noted that for Mode TY1,
which is the first transverse mode along the weak direction, modal participation factor
along the strong direction is purely zero. Therefore, its coefficient of variation does not
exist and is not considered here.

Effect of Modal S/N Ratio

For Case 1, the effect of modal s/n ratio on identification uncertainty is investigated,
which is implemented by varying the magnitude of input force. In addition to the
proposed uncertainty law, results of uncertainty law of OMA [5] and BAYOMA [9] are
also provided to illustrate the benefit of knowing the input force. The resulting posterior
c.0.v.s of the identified modal parameters are shown in Figure 3, where circle and cross
markers represent results of BAYEMA and BAYOMA respectively, while dashed and
solid lines show the value predicted by uncertainty laws for known and unknown-input
cases, respectively.
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Figure 2. Posterior c.o.v. calculated by BAYEMA versus uncertainty laws
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Figure 3. Effect of modal s/n ratio on posterior c.0.v. of modal parameters; Mode R1.
(Circle: identified value with known input; Cross: identified value with unknown input; Solid line:
uncertainty laws with known input; Dashed line: uncertainty laws with unknown input)

As depicted in Figure 3, the posterior c.0.v.s of the identified modal parameters
decrease as y increases regardless of whether the input is known or not. Compared to
unknown-input case, the identification uncertainty in the known-input case is mainly
governed by channel noise, which can be reduced effectively by increasing y and finally
it could be close to zero for a large enough value of y.

Effect of Data Length

We next investigate the influence of effective data length N.. From the uncertainty
law formula, it is observed that with the increase of N, the posterior c.0.v.s decrease.
In this context, extending the test duration is one of simple ways to reduce the
identification uncertainty. Verified by Figure 4, the c.0.v.s decrease in a vanishing
manner with increasing N..
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Figure 4. Effect of effective data length on posterior c.o.v. of modal parameters.
(Marker: identified value with known input; Dashed line: uncertainty laws with known input)



CONCLUSION

This paper develops the closed-form asymptotic expressions, i.e., uncertainty laws,

for the identification uncertainty of modal parameters with known broadband input.
They are derived for a well-separated mode with assumptions of small damping ratio
and long data. Synthetic data are used to verify the accuracy of uncertainties, and a
parametric study is conducted to investigate the key factors. Key results of uncertainty
laws show the beauty of nature, i.e., remarkably simple and insightful expressions
dominate the identification uncertainty of modal parameters. The derived uncertainty
laws allow us to understand how the identification uncertainty depends on test
configuration, and thus provides an opportunity to optimize the test configuration for a
more precise estimation.
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