
ABSTRACT 

In any structural system, the mechanical properties of its connections impact the 
structure’s global performance. Particularly, the rigidity of joints plays a substantial role 
in the system’s vibration response. Since connections typically include several 
components with complex geometry, they are usually oversimplified in the modeling 
process. Therefore, the analytical model is typically a low-fidelity representation of the 
connections’ performance. Although simplifying joints for modeling purposes is a good 
practice for engineering applications, it may reduce the accuracy of the model 
predictions. Thus, it is essential to reconcile accuracy with efficiency, particularly for 
complex joint modeling. In addition to the rigidity, the mass of connections may be 
another influential structural parameter for the system’s global response. The joint mass 
may be underestimated in the modeling procedure because the elements of joints in the 
steel connection regions, including plates, stiffeners, and bolts, are not often modeled in 
simplified analyses. Hence, as the analytical model is updated, connections’ mass and 
stiffness need to be estimated and incorporated into the updated model. This paper 
studies the interaction of mass and stiffness estimation for bolted connections of an 
experimental steel grid. The structure used in this research is a well-known structure 
built, instrumented, and tested at the University of Central Florida. The laboratory setup 
simulates the behavior of deck-on-beam bridges. In its initial analytical model, all grid 
joints are assumed to be completely fixed, and no extra mass is considered in the joint 
regions. The model updating procedure is limited to estimating joints’ mass and stiffness 
values. The modal information of the structure is extracted from the measured frequency 
response functions of the grid excited in a vertical hammer impact test. Stiffness- and 
flexibility-based error functions are employed for the model updating. The results 
demonstrate how the selection of joints’ uncertain parameters can affect the procedure 
of finding suitable structural layouts for the semi-rigid connections of the grid. The 
model updating procedure may be generalized to condition assessment and structural 
health monitoring of bridges, especially when their connections are subject to damage 
and failure. 
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INTRODUCTION 
 

The transmission of forces throughout a system depends on the connections between 
its mechanical or structural members. Oversimplified joints are often modeled to 
represent semi-rigid connections, which could lead to uncertainties in developing 
reliable analytical simulations. Introducing and calibrating multiple stiffness parameters 
for sophisticated connections may alleviate the problems of finding a stiffness scheme 
that accurately represents the realistic mechanical behavior of semi-rigid joints. 
Moreover, the constituent elements utilized in steel connection areas, such as plates, 
stiffeners, and bolts, entail additional localized mass, increasing the weight of the joints. 
Therefore, it is necessary to appropriately estimate both mass and stiffness parameters 
of connections to prevent significant inaccuracies in the system’s dynamic response. 

Wu and Li adopted weighted least squares and Bayesian estimation methods to 
identify the connection stiffness of beam-column joints [1]. Sanayei et al. utilized their 
proposed combined multiple parameter estimation algorithms to update the finite 
element model of a laboratory grid structure whose members were connected by bolted 
joints [2]. Subsequently, Santini-Bell et al. developed similar research using the test data 
of the same laboratory grid structure [3]. Altunisik et al. presented a finite element 
model updating procedure for an arch-type steel laboratory bridge model with semi-
rigid connections [4]. Basaga et al. updated the stiffness of connections in the analytical 
models of two laboratory structures using their proposed model updating algorithm [5]. 
Zapico-Valle et al. proposed two models comprising beams to reproduce the dynamic 
behavior of a beam-column bolted moment connection [6]. Using the method proposed 
in Ref. [2] for parametrization of joint models, Sanayei et al. estimated stiffness and 
mass values for the connection zones of the University of Central Florida (UCF) 
benchmark laboratory structural grid [7]. Dai proposed a finite element model updating 
technique based on uniform design [8]. Mehrkash and Santini-Bell updated the finite 
element model of the laboratory steel grid mentioned in Ref. [7] using experimental 
modal data [9]. Their model updating was limited to the stiffness estimation for the grid 
joints, simulated by simplified rotational partial fixities. 

Although various techniques are available for identifying connections, the literature 
reviewed only the related model updating-based approaches. Most studies focused on 
the stiffness of joints, while the connection mass has gained little attention. The current 
study proposes a procedure for simultaneous stiffness and mass estimation of joints in 
a laboratory steel grid. The studied structure is the steel grid used in Refs. [7, 9], known 
as the University of Central Florida (UCF) Grid. The authors estimated the stiffness of 
the grid connections by updating its simplified analytical model using stiffness-based 
error functions [9]. In this research, the proposed estimation protocol is developed by 
incorporating the mass of joints, showing how the interaction of mass and stiffness of 
the connections can alter the model updating results. The experimental modal data are 
employed to update the joints’ stiffness and mass values. In addition to the stiffness-
based error function, the flexibility-based error function is adopted for the structural 
parameter estimation. Different parametrizations and groupings are considered for the 
stiffness and mass properties of the grid connections. Finally, the most representative 
analytical model of the grid is selected based on the connection characteristics. 

  



 
FORMULATION OF THE STRUCTURAL PARAMETER ESTIMATION 

 
The structural parameter estimation is an inverse problem, i.e., given model outputs, 

the goal is to determine certain structural parameters of the model. Modal information 
is promising for various model updating tasks, while the structural parameters of interest 
can be elemental stiffness and mass values. A couple of the most efficient modal-based 
error functions are adopted in this research: stiffness- and flexibility-based error 
functions. Then, the errors of the measured modes are stacked, and the objective 
functions are computed as the Euclidean norm of the error functions. Finally, the 
objective functions are minimized through the fmincon of the MATLAB Optimization 
ToolboxTM [10], linked with SAP2000® API [11] for the required structural analyses.  
 
Modal Stiffness-Based Error Function 

 
The modal stiffness-based error function ms ( )E θ  is based on the residual modal 

elastic and inertia forces predicted at a subset of degrees of freedom, as given by Eq. (1) 
for each mode [12]: 

 
                                             ms ( ) ( ) ( )   E θ K θ M θ φ2                                      (1) 
 
where θ  is the structural parameter being updated,   is natural frequency, φ  is mode 
shape vector, and ( )K θ  and ( )M θ  are stiffness and mass matrices, respectively. This 
characteristic equation is partitioned in terms of mode shapes at measured and 
unmeasured degrees of freedom for each measured mode: 
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where subscripts a  and b  denote the measured and unmeasured degrees of freedom, 
respectively, and 2  has been shown by  . This equation is expanded, and the 
unmeasured mode shapes are condensed out. Hence, Eq. (1) is written in the following 
form: 

 
                       -1

ms aa aa ab ab bb bb ba ba a          E K M K M K M K M φ    (3) 

 
Modal Flexibility-Based Error Function 
 

The modal flexibility-based error function mf ( )E θ  is based on residual modal 
displacements predicted at a subset of degrees of freedom. If -1K M  is denoted by D , 
the error function can be stated by Eq. (4) for each mode [13]: 
 

                                                  mf ( ) ( ) E θ D θ I φ                                            (4) 



 
where I  is the identity matrix. The dynamic matrix and the mode shapes are partitioned 
based on the measured and unmeasured degrees of freedom in each mode: 
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By condensing out the unmeasured degrees of freedom for each mode, Eq. (6) is derived 
as follows. 
 
                                 -1

mf ab bb ba aa a       E D I D D D I φ2                           (6) 

 
THE UCF GRID AND ITS ANALYTICAL MODEL 
 

The structure used in this research is a laboratory steel grid designed, constructed, 
instrumented, and tested at the University of Central Florida (UCF). The structure 
conforms to the anticipated standards for bridges that cover short to medium-range 
distances. The grid was instrumented with eight vertical accelerometers for an impact 
hammer test. The layout of the accelerometers, shown by orange circles, and the 
location of one of the impacts are depicted in Figure 2. The geometrical and mechanical 
properties of the grid can be found in Ref. [14]. 

In this paper, the analytical model of the UCF Grid is developed by beam elements 
in the SAP2000® environment. Figure 1 depicts the grid model, in which the 
longitudinal girders and the transverse beams are divided into smaller elements to obtain 
more accurate predictions. In the initial model, all connections between the grid 
members are modeled as fixed joints. The numerous holes drilled in the connection 
zones for the connecting bolts may raise uncertainties about the rigidity of the joints. 
Also, no additional mass is considered in the joint regions. This assumption must be 
modified later in the model updating procedure because bolts, plates, angles, and sensors 
make the connection zones heavier. Partial fixities are incorporated at the ends of beams 
and girders as the rotational springs, while the additional mass is assigned to the nodes 
representing the joints for updating the finite element model of the grid. 

 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 1. The UCF Grid (left) [14] and its analytical model (right) 



 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 2. The UCF Grid connection (left) [15] and the plan of the grid instrumentation layout (right) [7] 
 
 
PARAMETRIZATION 
 

In this study, it is assumed that the only uncertainties that cause errors between the 
modal output of the actual structure and its analytical model pertain to the simplified 
modeling of its complex connections. In the initial model, all connections between the 
grid members are modeled as fixed joints. Nevertheless, the numerous holes drilled in 
the connection zones for the connecting bolts may raise uncertainties about the rigidity 
of the joints. Also, initially, no additional mass is considered in the joint regions. In this 
research, the capabilities of SAP2000® for simulating the rigidity and mass of structural 
nodes are utilized for modifying the mechanical characteristics of the steel grid 
connections. To do so, partial fixities are incorporated at the ends of beams and girders 
as the rotational springs, while the additional mass is assigned to the nodes representing 
the joints. These two stiffness and mass properties are considered the structural 
parameters being estimated during the finite element model updating of the grid.  
The extracted experimental natural frequencies of the structure for the first 12 modes 
are given in Table I, in addition to the predicted ones from the analytical model. No 
springs are considered at the ends of Members 13, 16, and 19 because they do not 
contribute to the global modes of the structure. Modes 7, 8, and 9 correspond to the local 
vibrations of the three mentioned members and are not captured by this instrumentation. 
In addition to Modes 7, 8, and 9, Modes 10 and 11 are not contributed to the estimation 
procedure, as their MAC values are found to be high. 
 
 

TABLE I. GRID’S EXPERIMENTAL AND ANALYTICAL NATURAL FREQUENCIES 
Mode Number Experimental Frequency (Hz) Analytical Frequency (Hz) 

1 22.3 22.6 
2 26.8 28.4 
3 33.3 33.9 
4 40.6 43.8 
5 64.6 62.4 
6 67.6 65.6 
7 - 73.2 
8 - 73.2 
9 - 73.4 
10 94.1 96.3 
11 96.4 99.5 
12 102.4 109.6 

 



 
 

TABLE II. DIFFERENT SCENARIOS FOR JOINTS’ PARAMETERS BEING UPDATED 
Case Number Longitudinal Springs Transverse Springs Mass 

1   × 
2  × × 
3 × ×  
4  ×  

 
 
RESULTS AND DISCUSSION 
 

Four different analytical cases are assessed based on the parametrization and 
combination of the joints’ mechanical properties. These models are considered as shown 
in Table II. Also, Tables III and IV give the estimated values for Cases 2 and 3 and the 
lower and upper bounds for the updated parameters. 

For Case 1, two groups of structural parameters are considered. All longitudinal 
rotational springs are placed in the first group, and every rotational transverse spring is 
put together in the second group. Based on this grouping, the stiffness variations of the 
springs create the objective function of interest. It could be shown that this objective 
function is a one-way surface for both the stiffness- and flexibility-based error functions. 
The one-way surface of the objective function plot implies that the objective function’s 
sensitivity to the transverse beams’ stiffness is negligible. Therefore, only the stiffness 
of the longitudinal girders should be considered as the updating parameter. 

Case 2 is similar to Case 1, but the stiffness of the transverse beams is discarded 
from the parameter estimation procedure. The estimation results for this case are given 
in Table III. It is observed that both stiffness- and flexibility-based error functions 
estimated the stiffness of the longitudinal beams in a straightforward manner. 

In Case 3, no stiffness is updated, but the mass of the eight instrumented joints is 
estimated. All eight joints are assumed to have the same weight and are considered a 
group of structural parameters. The estimated mass (weight) values are shown in Table 
IV. 

Finally, Case 4 combines Cases 2 and 3, where joints’ mass and the longitudinal 
beams’ stiffness are considered as the updating parameters. By examining the objective 
function, it is observed that the longitudinal stiffness asymptotically converges to large 
values, which correspond to the complete fixity of the joints. Hence, one can assume 
the connections are fixed, and only the mass of the joints is updated, like in Case 3. 
 
 

TABLE III. ESTIMATED VALUES FOR THE LONGITUDINAL SPRINGS (kN.m/rad) 
Error Function Lower Bound Upper Bound Initial Value Estimated Value 
Stiffness-based 2000 18000 8000 11306 

Flexibility-based 2000 18000 8000 9813 
 

 
 

TABLE IV. ESTIMATED VALUES FOR THE WEIGHT OF THE CONNECTIONS (kN) 
Error Function Lower Bound Upper Bound Initial Value Estimated Value 
Stiffness-based 0.0001 0.0040 0.0010 0.0013 

Flexibility-based 0.0001 0.0040 0.0010 0.0011 
 



 
 

TABLE V. NATURAL FREQUENCIES OF THE UPDATED UCF GRID MODEL 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
MODEL SELECTION 
 

Any of the four previously introduced representations of the steel grid based on the 
structural parametrization of their connections may be used as an updated analytical 
model of the system. However, a comparison can be made to examine which one more 
accurately describes the modal properties of the structure. It was observed that the two-
parameter Cases 1 and 4 involved parametrization redundancy so that one of the 
parameters being updated could be removed from the estimation procedure. Therefore, 
only Cases 2 and 3 are compared here, and the more representative model based on joint 
parametrization is proposed. Thus, the structure’s natural frequencies predicted by the 
updated models of Cases 2 and 3 are given in Table V. These are the values 
corresponding to the average of the estimated parameters obtained by the stiffness- and 
flexibility-based error functions. The natural frequencies of the original model and the 
experimental ones are listed again for comparison. For most modes, the errors between 
the experimental frequencies and the ones of Case 3 are observed to be smaller than the 
corresponding errors when Case 2 is compared. Both updated models predict natural 
frequencies closer to the experimentally extracted ones. Particularly, the frequency 
errors of the updated model in Case 3 show a significant decrease for Modes 2, 4, 11 
and 12. The decreases in errors by updating the model using Case 2 are not substantial. 
Hence, Case 3 can be considered a more representative model of the structure based on 
the modal characteristics of the system and focusing on the uncertainties of the joints. 
 
 
CONCLUSIONS 
 

The finite element model of the UCF Grid was updated solely based on the structural 
parameters of its complex connections. Four different mass and stiffness 
parametrizations were considered for the connections of the structure. It was 
demonstrated that the simultaneous consideration of the mass and stiffness properties of 
joints in structures might not be advantageous. This issue is mainly due to the 
asymptotic nature of semi-rigid connections, making them less sensitive to a system’s 

Mode No. Natural Frequencies (Hz) 
Original Model  Case 2  Case 3 Experimental 

1 22.6 22.1 21.9 22.3 
2 28.4 27.8 26.9 26.8 
3 33.9 33.0 32.9 33.3 
4 43.8 42.6 41.4 40.6 
5 62.4 61.6 62.0 64.6 
6 65.6 64.9 65.4 67.6 
7 73.2 73.2 73.2 - 
8 73.2 73.2 73.2 - 
9 73.4 73.4 73.4 - 
10 96.3 96.3 93.9 94.1 
11 99.5 99.3 96.6 96.4 
12 109.6 106.9 103.9 102.4 



modal characteristics when accompanied by the mass of joints in the parametrization 
schemes. The grouping of parameters simplified the structural parameter estimation 
considerably. Finally, it was found that the model with additional mass in the joint zones 
with complete fixity could be the most representative model of the grid, if the model 
updating would be limited to the structural parameters of its connections. 
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