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ABSTRACT 

The global demand for transportation has resulted in extensive expansion of rail- 
way networks. However, ensuring the safety, reliability, and efficiency of these rapidly 
expanding railway infrastructures requires monitoring of their structural health. Focus- 
ing on tracks, traditional visual inspections and portable measuring devices are com- 
monly used to gather geometric data for diagnosing and predicting track defects. In re- 
cent years, railway operators worldwide have employed specialized diagnostic vehicles 
equipped with optical and inertial sensors to collect track data and assess its condition. 
This approach has revolutionized rail condition assessment by introducing a mobile data 
acquisition platform for track inspection. Nevertheless, deploying these specialized vehi- 
cles disrupts regular rail service, limiting their frequency of operation and the continuous 
collection of rail data. To address this limitation, this study explores an on-board moni- 
toring (OBM) method that focuses on collecting vibration data from traveling trains. The 
proposed methodology involves gathering acceleration data from axle boxes of trains 
running at normal speeds. What sets this approach apart is its use of realistic train mod- 
els and the consideration of the dynamic interaction between the trains and tracks, which 
is typically oversimplified. The train model employed is simplified to reduce computa- 
tional requirements. The identification process relies on sequential Bayesian inference 
for joint input and state estimation. By estimating the input, the relevant rail rough- 
ness profile can be identified, thereby providing information on the presence of isolated 
defects, such as welded joints and squats, along the track system. 

 

 

INTRODUCTION 

Systematic monitoring and regular maintenance of railway infrastructures are crucial 
to ensure the safety of rail transport. Although reliable, traditional methods relying on 
visual inspections and on-site measurements are no longer sufficient to meet the growing 
demand for monitoring large sections of railways. As a result, roving implementations 
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using Track Recording Vehicles have gained popularity in recent years [1]. These ve-
hicles are equipped with optical (such as laser scanners and high-speed cameras) and
inertial sensors (including gyroscopes and inclinometers) to collect geometric data from
the rails. This data provides insights into specific irregularities on the tracks, enabling ac-
curate identification of isolated defects. However, these vehicles can only operate when
regular rail service is suspended, limiting their ability to provide continuous information
about the track’s condition [2].

An alternative approach involves using in-service trains equipped with low-cost mon-
itoring systems, such as accelerometers. These accelerometers can be mounted on vari-
ous train components, including axle boxes, bogies, and car bodies, allowing for a con-
tinuous supply of vibration data. Railway operators are increasingly improving the mon-
itoring systems on in-service trains primarily for vehicle condition monitoring, but these
systems can also facilitate monitoring of the rail infrastructure, including tracks and rail
bridges. For example, the ICN train of the Swiss Federal Railways (SBB) is equipped
with accelerometers in different locations [3]. This abundance of acceleration monitor-
ing data requires appropriate processing techniques.

One approach to handle such data involves using signal decomposition techniques
like wavelet transform [4] or mixed filtering approaches such as Kalman, band-pass,
and compensation filters [5]. These methods focus solely on processing the acquired
data without considering the dynamic interaction between trains and tracks. However,
a recent study by Dertimanis et al. [2] incorporated the dynamic train-track interaction
into the identification of rail defects using acceleration data collected from axle boxes of
a simple train model. This study showed promising results in identifying rail roughness
profiles from in-service trains.

Motivated by the need to develop comprehensive methods to efficiently monitor the
conditions of tracks, this work proposes an indirect approach to identify rail roughness
profiles using data collected from realistic traversing trains. The proposed method takes
into account the physics of the dynamic train-track interaction phenomenon [6] and com-
bines substructure-based dynamics [7] with Bayesian inference methods to perform rail
roughness identification [8]. The key component is the employment of a real three-
dimensional (3D) train model of SBB operating on tracks with rail roughness also mea-
sured by SBB, ensuring a realistic scenario setting.

REDUCED TRAIN-TRACK SYSTEM FOR RAIL ROUGHNESS IDENTIFICA-
TION

The train is modeled via rigid bodies connected with springs and dampers, which
constitute the vehicle’s suspension system. The track system is modeled via rigid beams
with a rough surface on which the train runs. The equation of motion (EOM) of the train
can be written as:

mvüv(t) + cvu̇v(t) + kvuv(t) = Wvλ(t) (1)

where uv(t) is the response vector of the train, and □̇ indicates differentiation with re-
spect to time t. The uv(t) vector contains translational and rotational degrees of freedom
(DOFs). mv is the mass matrix of the train, and cv and kv are, respectively, the damp-
ing and stiffness matrices that emanate from the train’s suspension system. λ(t) is the
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Figure 1. Schematic representation of the full train mode and the reduced, substructure-
based model for joint input-state estimation.

contact force vector between the train and the underlying track system, and Wv is the
contact direction matrix connecting the DOFs of the train to the contact force elements.
The elastic normal contact force [9] can be written as:

λ(t) = kHrc(x) (2)

where kH is the contact stiffness between the train wheels and the rail, and rc(x) is the
rail roughness vector of the roughness profile at each contact point between the rails and
the wheels. The EOM of the train (Eq. (1)) can be written in state-space space form as:

ẋ(t) = Acx(t) +Bcλ(t) (3)

where ẋ (t) is the state vector:

x(t) =

[
uv(t)
u̇v(t)

]
(4)

λ(t) is the input vector, and Ac and Bc are, respectively, the system and input matrices
of the system:

Ac =

[
0 I

− (mv)−1 kv − (mv)−1 cv

]
, Bc =

[
0

− (mv)−1Wv

]
. (5)

Assuming that acceleration measurement data are available, the output vector can be
written as:

y (t) = Ccx (t) +Dcλ (t) (6)

where the output matrix Cc and feedforward matrix Dc are:

Cc =
[
−Wa(mv)−1kv −Wa(mv)−1cv

]
, Dc = Wa(mv)−1Wv (7)

with Wa being the selection matrix of accelerations connecting the output data with the
DOFs of the train.

To reduce the computational cost involved in the identification task, the train model
is reduced via the adoption of a substructure-based reduction scheme. Model reduc-
tion, based on substructuring, allows for monitoring only a part of the structure [7]. The



substructure to be monitored depends on the location of the input and the installed sen-
sors, where the output is measured. For example, in the case of roughness identification
via measurements from the axle boxes, the monitored components can be the respec-
tive wheelsets (where the input is applied) and axle boxes (where the measurements are
collected from). To this end, the train model is partitioned into the vehicle’s upper sub-
structure, consisting of the car body and bogies, and the vehicle’s lower substructure,
consisting of the wheelsets and axle boxes. Subsequently, Eq. (1) can be written in a
partitioned form as:[

mu 0
0 ml

] [
üu(t)
ül(t)

]
+

[
cu cul

clu cl

] [
u̇u(t)
u̇l(t)

]
+

[
ku kul

klu kl

] [
uu(t)
ul(t)

]
=

[
0
Wl

]
λ(t) (8)

where superscript □u denotes the train vehicle’s upper part and □l the lower part. Fol-
lowing, the substructure of interest, i.e., the lower part, is isolated as:

mlül(t) + clu̇l(t) + klul(t) = Wlλ(t)− cluu̇u(t)− kluuu(t) (9)

and can be written as:

mlül(t) + clu̇l(t) + klul(t) = Wlλ(t) + g(t) (10)

where Wlλ(t) are the external forces and g(t) are the internal forces acting on the sub-
structure. Eq. (10) can then be expanded as:[
mw 0
0 ma

] [
üw(t)
üa(t)

]
+

[
cw cwa

caw ca

] [
u̇w(t)
u̇a(t)

]
+

[
kw kwa

kaw ka

] [
uw(t)
ua(t)

]
=

[
Wwλ
0

]
+

[
0
ga

]
(11)

where superscript □w denotes the wheelset substructure and □a indicates the axle boxes
substructure, connecting the lower part of the train to the upper part. Consequently, the
contact force vector λ acts only on the wheelsets and encompasses the external forces
applied at the contact point. At the same time, ga is an internal force vector acting
on the axle boxes and is typically orders of magnitude smaller than the contact force
vector [10]. Thus, ignoring ga as small, Eq. (10) can be written in state-space form,
similarly to Eq. (3).

The identification of rail roughness relies on a Bayesian inference approach. To ap-
ply such an approach, the state space system needs first to be discretized in time. For the
discretization of the state-space system, a sampling rate fs is adopted, corresponding to
a discretization time interval t = kTs. The discretization of the pertinent state-space ma-
trices follows a bilinear transform, also known as the Tustin method. The Tustin method
performs integration based on a trapezoidal rule and yields the best frequency-domain
match between the continuous and discretized systems [11]. This assumption emerges
from our effort to accurately reconstruct the input vector, which herein comprises the
roughness profile (i.e., a random time-series), as indicated by Eq. (2), in a reliable and
efficient manner. Accordingly, the identification of the roughness profile of the rails
relies on a recursive Bayesian inference approach that allows for concurrent identifica-
tion of the states and inputs to the reduced-order train system via a Dual Kalman Filter
(DKF), described in detail in the study of Eftekhar Azam et al. [8].
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Figure 2. (a) Response history and (b) one-sided Power Spectral Density of the true (blue)
and estimated via DKF rail roughness profile with the full train model (green) and the
reduced substructure-based train model (orange), (c) zoom-in of (a) between 600 m and
1100 m, and (d) zoom-in of be between 9 Hz and 20 Hz

ON-BOARD MEASUREMENT DATA FROM AN SBB DIAGNOSTIC VEHICLE
RUNNING ON THE SBB NETWORK

This section employs a realistic train model of the SBB network running on a rough-
ness profile on rigid ground, also measured by SBB [12]. Both train and track systems
are modeled via the SIMPACK software [13]. The train represents the diagnostic (gDfZ)
vehicle of SBB [14]. This train-track model simulated in SIMPACK software is used to
produce measurement data of the axle boxes at a sampling frequency fs = 1000 Hz. The
acceleration data is then used in the identification task.

The identification task, i.e., the inverse modeling of the system, is realized in MAT-
LAB software [15]. The total number of states is 144 of the vehicle, and the number
of inputs is eight, corresponding to the eight wheels of the four wheelsets of the vehi-
cle. The number of outputs is four, corresponding to the four accelerometers mounted
on the diagnostic vehicle. To reduce the computational effort of the identification task,
we employ the substructure-based approach of the previous section. In this case, the
wheelset-axle box system is separated from the upper part of the train (car body and
bogies), and internal forces arise at the connection with the upper part, as in Eq. (11).
Figure 1 illustrates the retained bodies. The total number of states retained is 64.

The estimation of roughness profiles follows the DKF with a bilinear transforma-
tion assumed for the discretization of the state-space system. The covariance matrix of
the process noise is set to Qw = 10−10 · I1, the measurement noise covariance ma-
trix is Qr = 10−1 · I2, and the covariance matrix of the input noise is estimated as
Qv = 10−5 · I3, based on an L-curve analysis. Figure 2 plots the response history
(Figure 2(a) and (c)) and one-sided Power Spectral Density (PSD) (Figure 2(b) and (d))



of the estimated profile of the rails when using the reduced-order model and the full
train model. For comparison, Figure 2 also shows the response history and PSD of the
roughness profile used in the forward analysis to generate measurement data, which is
referred to as the true roughness profile. The identified profile shows very good agree-
ment with the true roughness profile in both space (Figure 2(a) and (c)) and temporal
frequency domains (Figure 2(b) and (d)). Lastly, the identified roughness profile accord-
ing to the substructure-based reduced train model is in excellent agreement with that
exported based on the full train model, as shown in Figure 2.

Finally, the computational effort for the reduced-order train model is significantly
lower than that of the full-order train model (4.7 times faster), demonstrating the impor-
tance of reduced-order models in inverse problems, especially when online schemes are
of interest.

CONCLUDING REMARKS

This study presents an indirect approach for estimating rail roughness profiles using
on-board monitoring data from in-service trains. The proposed methodology takes into
account the dynamic interaction between trains and tracks and proposes a model-based
Bayesian inference method for roughness identification. A joint input-state estimation
scheme is employed to estimate the system input and state. To reduce the computational
effort involved, the vehicle model is simplified using a substructure-based scheme.

The efficacy of the proposed methodology is evaluated through a case study. This
case study utilizes data from a real diagnostic vehicle of SBB running on the SBB rail
network. The substructure-based reduced model yields accurate results when compared
to the roughness profile used for the generation of the measured acceleration data. At
the same time, compared to the full train model, it leads to improved computational
efficiency, which could be of particular interest in the case of near real-time identification
applications.

The proposed methodology has been applied to a diagnostic vehicle of SBB, aiming
to develop a comprehensive approach applicable to in-service trains. While the focus
has been on longitudinal roughness profiles in the vertical direction, the approach can
be extended to the lateral direction as well. The ultimate goal is to enable continuous
monitoring of track conditions for timely fault identification and maintenance.
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Foundation and the ETH Zürich Postdoctoral Fellowship scheme. The authors would
like to thank Claudia Kossmann from SBB for her input and constructive comments.

REFERENCES

1. Weston, P., C. Roberts, G. Yeo, and E. Stewart. 2015. “Perspectives on railway track ge-
ometry condition monitoring from in-service railway vehicles,” Vehicle System Dynamics,
53:1063–1091, doi:10.1080/00423114.2015.1034730.



2. Dertimanis, V., M. Zimmermann, F. Corman, and E. Chatzi. 2019. “On-Board Monitoring of
Rail Roughness via Axle Box Accelerations of Revenue Trains with Uncertain Dynamics,”
in Model Validation and Uncertainty Quantification, Volume 3. Conference Proceedings of
the Society for Experimental Mechanics Series, pp. 167–171.

3. Hoelzl, C., V. Dertimanis, M. Landgraf, L. Ancu, M. Zurkirchen, and E. Chatzi. 2022. “On-
board monitoring for smart assessment of railway infrastructure: A systematic review,” in
The Rise of Smart Cities, Advanced Structural Sensing and Monitoring Systems, pp. 223–
259.

4. Bocciolone, M., A. Caprioli, A. Cigada, and A. Collina. 2007. “A measurement system
for quick rail inspection and effective track maintenance strategy,” Mechanical Systems and
Signal Processing, 3:1242–1254, doi:10.1016/j.ymssp.2006.02.007.

5. Lee, J., S. Choi, S. Kim, C. Park, and Y. Kim. 2012. “A mixed filtering approach for track
condition monitoring using accelerometers on the axle box and bogie,” IEEE Transactions
on Instrumentation and Measurement, 61:749–758, doi:10.1109/TIM.2011.2170377.

6. Stoura, C. and E. Dimitrakopoulos. 2020. “Additional damping effect on bridges because of
vehicle-bridge interaction,” Journal of Sound and Vibration, 476:115294, doi:10.1016/j.jsv.
2020.115294.

7. Tatsis, K., V. Dertimanis, C. Papadimitriou, E. Lourens, and E. Chatzi. 2021. “A general
substructure-based framework for input-state estimation using limited output-only measure-
ments,” Mechanical Systems and Signal Processing, 150:107223.

8. Azam, S. E., E. Chatzi, and C. Papadimitriou. 2015. “A dual Kalman filter approach for
state estimation via output-only acceleration measurements,” Mechanical Systems and Sig-
nal Processing, 60–61:866–886, doi:10.1016/j.ymssp.2015.02.001.

9. Johnson, K. 1987. Contact Mechanics, Cambridge University Press, Cambridge, United
Kingdom.

10. Stoura, C. and E. Dimitrakopoulos. 2020. “A Modified Bridge System method to character-
ize and decouple vehicle-bridge interaction,” Acta Mech., 231:3825–3845.

11. Franklin, G., J. Powell, and M. Workman. 1998. Digital Control of Dynamic Systems,
Addison-Wesley, Menlo Park.

12. Hoelzl, C., L. Keller, T. Simpson, C. Stoura, C. Kossmann, and E. Chatzi. 2023. “Data-
Driven Railway Vehicle Parameter Tuning Using Markov-Chain Monte Carlo Bayesian Up-
dating,” in Conference Proceedings of XII Conference on Structural Dynamics (EURODYN
2023).
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