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ABSTRACT 

Load identification from vibration measurements is usually cost-effective for 
obtaining dynamic loads on structures. Modal testing enables structural models to be 
validated or updated prior to being used for load identification. This paper proposes a 
methodology to make better use of modal test data for developing load identification 
methods. Modal test data are split into two datasets. One is used for model updating, 
and the other is used to validate load identification methods by inputting the measured 
vibration response and comparing the identified loads with the measured loads. Cross- 
validation can be achieved by using different splitting of data. This paper demonstrates 
this methodology with a case study in which impact hammer tests are performed on a 
stiffly-connected assembly. The test data support the optimization-based updating of a 
simplified model and the validation of a proposed Newmark-β-based load identification 
method. The results show that different impact locations of the model updating dataset 
affect the identification accuracy of the load identification dataset. The Newmark-β- 
based method yields comparable performance to the traditional frequency-domain 
method, while it has the advantage of being implemented at each time step. 

 

INTRODUCTION 

Obtaining dynamic loads on a structure is essential for assessing its health condition 
and predicting its remaining useful life. Since forces are often more difficult or 
expensive to measure than responses, identifying dynamic loads from vibration 
measurements is usually cost-effective, and many methods have been developed. In 
general, these methods combine analyses of measured structural responses with 
characteristics of structural dynamics in the frequency or time domain [1]. Frequency- 
domain methods are based on spectra analysis, in which structural dynamics is usually 
characterized by transfer functions or frequency response functions (FRFs) [2~4]. Time- 
domain methods enable loads to be identified at each time step, which is more applicable 
to non-stationary loads. In different time-domain methods, structural dynamics is 
characterized by different types of models, such as mass/stiffness/damping matrices [5, 
6], modal parameters [5, 7], impulse response functions [8~10], state transition matrices 
[11], and surrogate models [12, 13]. 
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Modal testing is widely applied to validate or update structural models before they 

are used for load identification [9, 10, 14]. It enables more accurate characterization of 

structural dynamics and potentially more accurate load identification. In the literature, 

modal test data has rarely been used to validate load identification methods. 

This paper aims to incorporate and make better use of modal test data for developing 

and validating load identification methods. First, a general methodology will be 

introduced, which splits modal test data into a model updating dataset and a load 

identification dataset. Then, an experimental case study will be presented, in which 

impact hammer tests on a stiffly-connected assembly will support the updating of a 

simplified model and the validation of a proposed Newmark-β-based load identification 

method. Finally, conclusions will be drawn.  
 

 

METHODOLOGY 
 

Figure 1 illustrates how modal testing is incorporated into the development and 

validation of load identification methods. In modal tests, a structure is excited by 

artificial loads at different locations, and its vibration responses are measured at 

different locations. All modal test data (including loads and responses) are then split 

into a model updating dataset and a load identification dataset. The model updating 

dataset enables the structural dynamics to be characterized and further a model of the 

structure to be updated. Then, by combining the updated model with a load 

identification method, loads on the structure can be identified from arbitrary vibration 

measurements. The method can be tested by inputting the measured vibration response 

in the load identification dataset and comparing the identified loads with the measured 

loads. Such a procedure can be repeated with different splitting of the modal test data to 

cross-validate the load identification method. Finally, the model of the structure can be 

updated using the complete modal test data, and further tests of the load identification 

method can be performed.  
 

 

 
 

Figure 1. Methodology for incorporating modal testing into load identification. 



In the proposed methodology, modal testing provides not only an updated model for 

driving load identification but also experimental validation of load identification 

methods. In particular, some artificial loads in modal testing, such as impact loads, are 

significantly transient, and they allow load identification methods to be assessed in 

challenging situations with such transient loads. 
 

 

EXPERIMENTAL CASE STUDY 
 

Modal Tests on A Stiffly-Connected Assembly 

 

      We showcase the above methodology using a mechanical assembly, as shown in 

Figure 2. It is intended to resemble a vehicle on the V-Track test rig [15]. The assembly 

consists of an upper mass connected to a beam through preloaded bolts and a lower 

mass suspended below the upper mass through springs. In some situations, an additional 

jack-loading frame is mounted to connect the two masses and preload the springs. In 

this case, the two masses and the beam are stiffly connected with high damping due to 

friction from the high preloads. Figure 3 (a) illustrates the dynamics of the assembly. 

Additionally, the presence of nonlinearities and local resonances further increases the 

challenge of the load identification.  

We conduct impact hammer tests on the assembly using a Brüel & Kjær 8206-003 

hammer. As shown in Figure 2, impact loads are generated and measured at two 

locations – one on the upper mass and one on the lower mass. Meanwhile, we measure 

the vertical vibration of the assembly using six PCB 356B21 accelerometers – three on 

the upper mass and three on the lower mass. The sampling rate is 102,400 Hz. Three 

groups of tests are conducted, as listed in Table I. Following the proposed methodology, 

two groups of data are used to update a model of the assembly separately, and the 

remaining is used to validate a load identification method based on the updated models. 

The data splitting in Table I is used as an example, while other different strategies are 

also applicable. The FRFs of each sensor location (ui and li, i=1, 2, 3) for each impact 

load (p1 and p2) are averaged between the two repeated tests of each group, denoted as 

( )
1 ip uG f , ( )

1 ip lG f , ( )
2 ip uG f , and ( )

2 ip lG f , and f denotes the frequency. 

 

 

 
 

Figure 2. A stiffly-connected assembly and impact and sensor locations in modal testing. (a) Front view; 

(b) Rear view; (c) The upper mass; (d) The lower mass. 



 
 

Figure 3. (a) Illustration of the assembly dynamics; (b) Simplified model of the assembly. 

 

TABLE I. SPLITTING OF MODAL TEST DATA 

Group 

number  

Impact 

location 

Number of 

repeated tests 

Use of data 

1 Upper mass 2 Update a model based on modal tests 

with impacts only on the upper mass 

2 Lower mass 2 Update a model based on modal tests 

with impacts only on the lower mass 

3 Upper mass 2 Validate the identification of impact 

loads on the upper mass 

 

 

Optimization-based Model Updating 

 

      Load identification is usually driven by a model representing the dynamics of the 

structure. The more accurate the model, the better the representation of the structural 

dynamics. However, as model complexity increases, model updating and load 

identification become more challenging because ill-posedness and local minima 

become more problematic in solving such inverse problems. Therefore, we use a two-

degree-of-freedom (DOF) model to represent the dynamics of the assembly, as shown 

in Figure 3 (b). All parameters of the model (m1, m2, k1, k2, c1, c2) are assumed to be 

unknown. These parameters are not equal to the physical parameters of the assembly 

but represent the equivalent parameters in the simplified and linearized model. 

The transfer functions from each of the two impact loads (p1, p2) to the 

displacements of the two masses (x1, x2) can be calculated by applying the Laplace 

transform to their equations of motion, denoted as ( )
1 1p xH f , ( )

1 2p xH f , ( )
2 1p xH f , and 

( )
2 2

 p xH f . Then, we identify the parameters of the model by minimizing the sum of 

squared logarithmic deviations between the measured FRFs (after being averaged) and 

the calculated transfer functions, as expressed below. 
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where F represents the frequency ranges of FRFs for model updating and J represents 

the impact locations of modal tests used for model updating. 



 
 

Figure 4. Modal testing and model updating results using the first two groups of data. (a) From p1 to x1; 

(b) From p1 to x2; (c) From p2 to x1; (b) From p2 to x2. 

 

 

We employ the constrained optimization solver of sequential quadratic 

programming [16] in MATLAB to find the optimal model parameters within a given 

range for each parameter. These ranges are very wide because no prior knowledge of 

these parameters is available. Initial parameters are randomly generated within the given 

ranges. We repeat such random initialization and iterative optimization to find the 

(quasi-) global optimum from multiple local optima. 

First, the measured FRFs from the first group of modal test data are used to update 

the model parameters, i.e., J={1} in Equation (1). We use frequencies near the resonance 

peaks for model updating, i.e., F={35 Hz<f<75 Hz}∪{120 Hz<f<145 Hz}. The 

measured FRFs and the corresponding transfer functions calculated from the updated 

model are plotted in Figure 4 (a) and (b). Similarly, the modal testing and model 

updating results based on the second group of data (J={2}) are shown in Figure 4 (c) 

and (d). The results show that the updated models provide transfer functions that are 

very close to the measured FRFs, especially near the resonance peaks at 40 Hz and 130 

Hz. The two resonance peaks correspond to the in-phase and anti-phase bouncing of the 

two masses. This consistency demonstrates the effectiveness of model updating. 

Some deviations can be observed outside the frequency ranges for the model 

updating. In the measured FRFs, the peaks below 35 Hz come from the bending of the 

beam, and those above 200 Hz may be related to local resonances of the lower mass. 

Since these dynamics are not included in the model, the transfer functions from the 

updated models cannot well represent them. 
 

Newmark-β-based Load Identification 
 

      Newmark-β algorithm is an implicit and robust method for numerical integration 

[17] and has been adapted into a few load identification methods [18, 19]. In [18], a 

vector containing the loads at all time steps is computed for each identification, so the 

dimension of equations increases with increasing time step. In [19], loads can be 

identified iteratively at each time step with part of the responses unknown, but the need 

for displacement responses reduces its applicability in many situations. 

In this paper, we develop a Newmark-β-based method to achieve step-wise load 

identification from complete acceleration measurements under constrained loading 



conditions. Generally, structure dynamics are characterized by mass, stiffness, and 

damping matrices, denoted as M, K, and C. We denote the displacement vector and 

load vector as x and p, respectively, and the j-th (j=1, …, n) element of x as xj. Among 

the n DOF, some may be known not to be directly loaded by external forces, i.e., the 

corresponding elements in p are zero. We include the indices of these DOF in a set B 

and the rest in its complementary BC. If no such information is available, B=∅, and the 

identified loads are non-zero for all DOF. Then, the loads on the structure at each time 

step p(s) (s=0, 1, …) can be identified from the accelerations of all DOF x  as follows. 

Step 1: Set s=0 and define initial conditions      0 0 0x , x , x . 

Step 2: Define time step size Δt and integration parameters β and γ [17]. 

Step 3: Calculate the equivalent stiffness matrix as follows [17]. 
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Step 4: Estimate part of the displacement vector (corresponding to DOF with non-

zero loads, i.e., xj, j∊BC) for the next time step by solving the following equations. 
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where Ke(j,h) represents the j-th row and h-th column of Ke, and the same notation applies 

to M and C. If B=∅, Equation (4) vanishes, and the entire displacement vector x[s+1] 

can be calculated according to Equation (3). If B≠∅, overdetermined equations of 

xj[s+1], j∊BC can be constructed by substituting xj[s+1], j∊B obtained from Equation (3) 

into Equation (4). These overdetermined equations can be solved using least square 

methods, in which regularization can be included [20]. Further, the remaining 

displacement xj[s+1], j∊B, can be obtained by solving Equation (4) after substituting 

xj[s+1], j∊BC. By doing so, the constraints of loading conditions are satisfied. 

 Step 5: Estimate the velocity vector  1s+x  and the load vector p[s+1] as follows. 
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Step 6: Increase the time step s by 1 and repeat Steps 4~5 for the new time step. 



Validation of Load Identification 
 

Based on the updated two-DOF model, the mass, stiffness, and damping matrices 

can be determined, and the displacement and load vectors are x=[x1, x2]
T and p=[p1, p2]

T, 

respectively. The third group of modal test data is used to validate the Newmark-β-based 

load identification method. Since we know that the impact load is applied on the upper 

mass, the constraint of p2=0 is included. The measured acceleration responses are 

averaged over U1 and U3 for the upper mass and over L1 and L3 for the lower mass. A 

low-pass infinite impulse response filter with a cut-off frequency of 1,000 Hz is applied 

to reduce noise in the raw signals.  

Figure 5 presents the load identification results for the two tests in this dataset, 

consisting of a light impact and a heavy impact. In each plot, the load measured by the 

force transducer in the hammer is plotted as a reference. The identified loads using the 

model updated with impacts on the upper mass p1 (the first group of data) and those 

using the model updated with impacts on the lower mass p2 (the second group of data) 

are plotted. Moreover, we apply the traditional frequency-domain load identification 

method [1] to the same acceleration responses, and the results are also shown. No 

regularization is used in the two identification methods. 

The results show that the impact loads can be effectively identified from the 

measured accelerations through the two methods when using the model updated with 

impacts on the upper mass. Both methods underestimate the impact loads when using 

the model updated with impacts on the lower mass, reflecting the influence of different 

impact locations in the modal tests on the load identification performance. Outside the 

impact phase, some oscillatory errors can be observed, mainly due to the local resonance 

of the lower mass. In general, the identification results of the two methods are close to 

each other. Compared to the frequency-domain method, the proposed Newmark-β-

based method has the advantage of being implemented at each time step.  
 

 

 
 

Figure 5. Comparisons between the measured loads and the identification results of different methods. 

(a) A light impact load; (b) A heavy impact load. 



CONCLUSIONS 
 

This paper proposes and demonstrates how modal test data are split and used to 

update structural models and validate load identification methods. This methodology 

provides a convenient experimental assessment of load identification methods and 

enables cross-validation with different data splitting. In future research, we will improve 

the applicability of the proposed Newmark-β-based method to incomplete acceleration 

measurements and further test it on structures with multiple loading positions. 
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