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ABSTRACT

Load identification from vibration measurements is usually cost-effective for
obtaining dynamic loads on structures. Modal testing enables structural models to be
validated or updated prior to being used for load identification. This paper proposes a
methodology to make better use of modal test data for developing load identification
methods. Modal test data are split into two datasets. One is used for model updating,
and the other is used to validate load identification methods by inputting the measured
vibration response and comparing the identified loads with the measured loads. Cross-
validation can be achieved by using different splitting of data. This paper demonstrates
this methodology with a case study in which impact hammer tests are performed on a
stiffly-connected assembly. The test data support the optimization-based updating of a
simplified model and the validation of a proposed Newmark-/$-based load identification
method. The results show that different impact locations of the model updating dataset
affect the identification accuracy of the load identification dataset. The Newmark-/-
based method yields comparable performance to the traditional frequency-domain
method, while it has the advantage of being implemented at each time step.

INTRODUCTION

Obtaining dynamic loads on a structure is essential for assessing its health condition
and predicting its remaining useful life. Since forces are often more difficult or
expensive to measure than responses, identifying dynamic loads from vibration
measurements is usually cost-effective, and many methods have been developed. In
general, these methods combine analyses of measured structural responses with
characteristics of structural dynamics in the frequency or time domain [1]. Frequency-
domain methods are based on spectra analysis, in which structural dynamics is usually
characterized by transfer functions or frequency response functions (FRFs) [2~4]. Time-
domain methods enable loads to be identified at each time step, which is more applicable
to non-stationary loads. In different time-domain methods, structural dynamics is
characterized by different types of models, such as mass/stiffness/damping matrices [5,
6], modal parameters [5, 7], impulse response functions [8~10], state transition matrices
[11], and surrogate models [12, 13].
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Modal testing is widely applied to validate or update structural models before they
are used for load identification [9, 10, 14]. It enables more accurate characterization of
structural dynamics and potentially more accurate load identification. In the literature,
modal test data has rarely been used to validate load identification methods.

This paper aims to incorporate and make better use of modal test data for developing
and validating load identification methods. First, a general methodology will be
introduced, which splits modal test data into a model updating dataset and a load
identification dataset. Then, an experimental case study will be presented, in which
impact hammer tests on a stiffly-connected assembly will support the updating of a
simplified model and the validation of a proposed Newmark-/-based load identification
method. Finally, conclusions will be drawn.

METHODOLOGY

Figure 1 illustrates how modal testing is incorporated into the development and
validation of load identification methods. In modal tests, a structure is excited by
artificial loads at different locations, and its vibration responses are measured at
different locations. All modal test data (including loads and responses) are then split
into a model updating dataset and a load identification dataset. The model updating
dataset enables the structural dynamics to be characterized and further a model of the
structure to be updated. Then, by combining the updated model with a load
identification method, loads on the structure can be identified from arbitrary vibration
measurements. The method can be tested by inputting the measured vibration response
in the load identification dataset and comparing the identified loads with the measured
loads. Such a procedure can be repeated with different splitting of the modal test data to
cross-validate the load identification method. Finally, the model of the structure can be
updated using the complete modal test data, and further tests of the load identification
method can be performed.
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Figure 1. Methodology for incorporating modal testing into load identification.



In the proposed methodology, modal testing provides not only an updated model for
driving load identification but also experimental validation of load identification
methods. In particular, some artificial loads in modal testing, such as impact loads, are
significantly transient, and they allow load identification methods to be assessed in
challenging situations with such transient loads.

EXPERIMENTAL CASE STUDY
Modal Tests on A Stiffly-Connected Assembly

We showcase the above methodology using a mechanical assembly, as shown in
Figure 2. It is intended to resemble a vehicle on the VV-Track test rig [15]. The assembly
consists of an upper mass connected to a beam through preloaded bolts and a lower
mass suspended below the upper mass through springs. In some situations, an additional
jack-loading frame is mounted to connect the two masses and preload the springs. In
this case, the two masses and the beam are stiffly connected with high damping due to
friction from the high preloads. Figure 3 (a) illustrates the dynamics of the assembly.
Additionally, the presence of nonlinearities and local resonances further increases the
challenge of the load identification.

We conduct impact hammer tests on the assembly using a Briel & Kjaer 8206-003
hammer. As shown in Figure 2, impact loads are generated and measured at two
locations — one on the upper mass and one on the lower mass. Meanwhile, we measure
the vertical vibration of the assembly using six PCB 356B21 accelerometers — three on
the upper mass and three on the lower mass. The sampling rate is 102,400 Hz. Three
groups of tests are conducted, as listed in Table I. Following the proposed methodology,
two groups of data are used to update a model of the assembly separately, and the
remaining is used to validate a load identification method based on the updated models.
The data splitting in Table I is used as an example, while other different strategies are
also applicable. The FRFs of each sensor location (uiand I;, i=1, 2, 3) for each impact
load (p1 and p2) are averaged between the two repeated tests of each group, denoted as

G, (). G,, (). G,, (), and G, (f),andfdenotes the frequency.
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Figure 2. A stiffly-connected assembly and impact and sensor locations in modal testing. (a) Front view;
(b) Rear view; (c) The upper mass; (d) The lower mass.
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Figure 3. (a) Illustration of the assembly dynamics; (b) Simplified model of the assembly.
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TABLE I. SPLITTING OF MODAL TEST DATA

Group Impact Number of Use of data
number location repeated tests
1 Upper mass 2 Update a model based on modal tests
with impacts only on the upper mass
2 Lower mass 2 Update a model based on modal tests
with impacts only on the lower mass
3 Upper mass 2 Validate the identification of impact
loads on the upper mass

Optimization-based Model Updating

Load identification is usually driven by a model representing the dynamics of the
structure. The more accurate the model, the better the representation of the structural
dynamics. However, as model complexity increases, model updating and load
identification become more challenging because ill-posedness and local minima
become more problematic in solving such inverse problems. Therefore, we use a two-
degree-of-freedom (DOF) model to represent the dynamics of the assembly, as shown
in Figure 3 (b). All parameters of the model (mz, my, ki, k2, c1, C2) are assumed to be
unknown. These parameters are not equal to the physical parameters of the assembly
but represent the equivalent parameters in the simplified and linearized model.

The transfer functions from each of the two impact loads (pi, p2) to the
displacements of the two masses (xi, X2) can be calculated by applying the Laplace

transform to their equations of motion, denotedas H,, (), H, (f), H_ (f),and
H_. (f). Then, we identify the parameters of the model by minimizing the sum of

squared logarithmic deviations between the measured FRFs (after being averaged) and
the calculated transfer functions, as expressed below.
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where F represents the frequency ranges of FRFs for model updating and J represents
the impact locations of modal tests used for model updating.
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Figure 4. Modal testing and model updating results using the first two groups of data. (2) From p1 to xi;
(b) From p1 to x2; (c) From p2 to x1; (b) From p2 to xz.

We employ the constrained optimization solver of sequential quadratic
programming [16] in MATLAB to find the optimal model parameters within a given
range for each parameter. These ranges are very wide because no prior knowledge of
these parameters is available. Initial parameters are randomly generated within the given
ranges. We repeat such random initialization and iterative optimization to find the
(quasi-) global optimum from multiple local optima.

First, the measured FRFs from the first group of modal test data are used to update
the model parameters, i.e., J={1} in Equation (1). We use frequencies near the resonance
peaks for model updating, i.e., F={35 Hz<f<75 Hz}u{120 Hz<f<145 Hz}. The
measured FRFs and the corresponding transfer functions calculated from the updated
model are plotted in Figure 4 (a) and (b). Similarly, the modal testing and model
updating results based on the second group of data (J={2}) are shown in Figure 4 (c)
and (d). The results show that the updated models provide transfer functions that are
very close to the measured FRFs, especially near the resonance peaks at 40 Hz and 130
Hz. The two resonance peaks correspond to the in-phase and anti-phase bouncing of the
two masses. This consistency demonstrates the effectiveness of model updating.

Some deviations can be observed outside the frequency ranges for the model
updating. In the measured FRFs, the peaks below 35 Hz come from the bending of the
beam, and those above 200 Hz may be related to local resonances of the lower mass.
Since these dynamics are not included in the model, the transfer functions from the
updated models cannot well represent them.

Newmark-g-based Load Identification

Newmark-£ algorithm is an implicit and robust method for numerical integration
[17] and has been adapted into a few load identification methods [18, 19]. In [18], a
vector containing the loads at all time steps is computed for each identification, so the
dimension of equations increases with increasing time step. In [19], loads can be
identified iteratively at each time step with part of the responses unknown, but the need
for displacement responses reduces its applicability in many situations.

In this paper, we develop a Newmark-/-based method to achieve step-wise load
identification from complete acceleration measurements under constrained loading



conditions. Generally, structure dynamics are characterized by mass, stiffness, and
damping matrices, denoted as M, K, and C. We denote the displacement vector and
load vector as x and p, respectively, and the j-th (j=1, ..., n) element of x as x;. Among
the n DOF, some may be known not to be directly loaded by external forces, i.e., the
corresponding elements in p are zero. We include the indices of these DOF in a set B
and the rest in its complementary BC. If no such information is available, B=@, and the
identified loads are non-zero for all DOF. Then, the loads on the structure at each time
step p(s) (s=0, 1, ...) can be identified from the accelerations of all DOF x as follows.
Step 1: Set s=0 and define initial conditions x[0],%[0],%[0].

Step 2: Define time step size At and integration parameters 5 and y [17].
Step 3: Calculate the equivalent stiffness matrix as follows [17].

K, = 12M+—C+K 2
BAt LAt

Step 4: Estimate part of the displacement vector (corresponding to DOF with non-
zero loads, i.e., x;, jeBC) for the next time step by solving the following equations.

e 1 128 -
xj[s+1]_ﬂAt (xj[s+1]+ﬂmxj[s]+—2ﬂ Xj[S]j-FXj[S] i=L..n @3

Al 2 o]

4 1
Ke(j’h)xh[S+1]:;M(j’h)(wxh[s]+ﬁAt 25

+Z%( x[5]+ ﬂﬂxh[s] AW—ﬂZﬂ) [s]j

n

h=1

jeB (4

where Ke(h represents the j-th row and h-th column of Ke, and the same notation applies
to M and C. If B=@, Equation (4) vanishes, and the entire displacement vector x[s+1]
can be calculated according to Equation (3). If B#@, overdetermined equations of
xj[s+1], jeBC can be constructed by substituting x;[s+1], jeB obtained from Equation (3)
into Equation (4). These overdetermined equations can be solved using least square
methods, in which regularization can be included [20]. Further, the remaining
displacement xj[s+1], jeB, can be obtained by solving Equation (4) after substituting
xj[s+1], jeBC. By doing so, the constraints of loading conditions are satisfied.

Step 5: Estimate the velocity vector x[s+1] and the load vector p[s+1] as follows.

X[s+1] = x[s]+At(1—y) X[s]+AtX[s+1] (5)
p[s+1]= Kex[s+1]_|v|[ﬁit2 x[s]+ﬂ1At )’([s]+1;;ﬂ x[s]j
(6)
—C[ﬁx[s]ﬂ/;ﬁ x[s]+“(72;ﬂ) X[s]j

Step 6: Increase the time step s by 1 and repeat Steps 4~5 for the new time step.



Validation of Load ldentification

Based on the updated two-DOF model, the mass, stiffness, and damping matrices
can be determined, and the displacement and load vectors are x=[xi, x2]" and p=[pz, p2]",
respectively. The third group of modal test data is used to validate the Newmark-$-based
load identification method. Since we know that the impact load is applied on the upper
mass, the constraint of p>=0 is included. The measured acceleration responses are
averaged over U1 and U3 for the upper mass and over L1 and L3 for the lower mass. A
low-pass infinite impulse response filter with a cut-off frequency of 1,000 Hz is applied
to reduce noise in the raw signals.

Figure 5 presents the load identification results for the two tests in this dataset,
consisting of a light impact and a heavy impact. In each plot, the load measured by the
force transducer in the hammer is plotted as a reference. The identified loads using the
model updated with impacts on the upper mass p: (the first group of data) and those
using the model updated with impacts on the lower mass p. (the second group of data)
are plotted. Moreover, we apply the traditional frequency-domain load identification
method [1] to the same acceleration responses, and the results are also shown. No
regularization is used in the two identification methods.

The results show that the impact loads can be effectively identified from the
measured accelerations through the two methods when using the model updated with
impacts on the upper mass. Both methods underestimate the impact loads when using
the model updated with impacts on the lower mass, reflecting the influence of different
impact locations in the modal tests on the load identification performance. Outside the
impact phase, some oscillatory errors can be observed, mainly due to the local resonance
of the lower mass. In general, the identification results of the two methods are close to
each other. Compared to the frequency-domain method, the proposed Newmark-4-
based method has the advantage of being implemented at each time step.
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Figure 5. Comparisons between the measured loads and the identification results of different methods.
(a) A light impact load; (b) A heavy impact load.



CONCLUSIONS

This paper proposes and demonstrates how modal test data are split and used to

update structural models and validate load identification methods. This methodology
provides a convenient experimental assessment of load identification methods and
enables cross-validation with different data splitting. In future research, we will improve
the applicability of the proposed Newmark-$-based method to incomplete acceleration
measurements and further test it on structures with multiple loading positions.
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