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ABSTRACT

Population-based structural health monitoring (PBSHM) aims to share valuable infor-
mation among members of a population, such as normal- and damage-condition data, to
improve inferences regarding the health states of the members. Even when the population
is comprised of nominally-identical structures, benign variations among the members
will exist as a result of slight differences in material properties, geometry, boundary
conditions, or environmental effects (e.g., temperature changes). These discrepancies
can affect modal properties and present as changes in the characteristics of the resonance
peaks of the frequency response function (FRF). The hierarchical Bayesian approach
provides a useful modelling structure for PBSHM, as population- and domain-level dis-
tributions are learnt simultaneously to bolster statistical strength among the parameters,
and reduce variance among the parameter estimates. This paper provides an overview of
current work, where hierarchical Bayesian models are developed for a small population of
nominally-identical helicopter blades, using FRF data. These models account for benign
variations that present as differences in the underlying dynamics across the input space,
while also considering (and utilising) the similarities among the blades.

INTRODUCTION

The current work is focussed on applying population-based structural health mon-
itoring (PBSHM) to a group of nominally-identical structures (i.e., a homogeneous
population [1, 2]), with consideration for the effects of temperature changes, to improve
understanding of the variability in the health states of the population, as well as the
individual members. (In contrast, a heterogeneous population [3, 4] will have greater
discrepancies among the members, such as different suspension bridge designs, and may
require further processing such as domain adaptation [5-8]). However, even among
nominally-identical structures, variations caused by manufacturing differences, ageing
parts, and changes in testing conditions can introduce uncertainty in the underlying dy-
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namics. For example, increased temperature may reduce stiffness, which may decrease
natural frequency (a common feature of interest for many SHM systems). Likewise,
damping can also be affected by temperature, and might increase or decrease depending
on the material or temperature range [9]. Accounting for these benign fluctuations is
important for the practical implementation and generalisation of SHM technologies, as
features commonly used for damage identification are often sensitive to harmless changes
as well as damage [10, 11].

Another challenge for SHM systems that rely on machine learning is data sparsity.
Sensing networks are prone to data loss, because of sensor failure caused by harsh en-
vironmental conditions or insufficient maintenance. Transmission issues make wireless
sensing networks particularly susceptible to loss, and can be caused by large transmission
distances between the sensors and base station [12], software/hardware problems [13], and
other issues such as weather changes, interference from nearby devices, or installation dif-
ficulties [14]. In addition, modern systems that produce large amounts of high-resolution
data can suffer losses resulting from a data transfer bottleneck [15]. Significant losses
higher than 30% have been reported [13, 14, 16], and a 0.38% data loss was found to have
similar effects on power spectral density (PSD) as 5% additive noise [17]. Differences
in sample rate among sensors could have a similar presentation, with the data captured
at a lower rate seemingly missing data relative to that captured at a higher rate. Again,
PBSHM addresses these sparsity issues via knowledge transfer among similar structures,
so that data-rich members can support those with more limited information.

Homogenous populations can be represented using a general model, called a pop-
ulation form. The form is a model that attempts to capture the ‘essential nature’ of
the population, as well as the variations encountered by the structure in operation (e.g.,
temperature changes) and slight differences among nominally-identical members [1]. The
concept of the population form was first introduced in [1, 2], where a conventional or
single Gaussian process (GP) was applied to frequency response functions (FRFs), to
develop a representation for a nominally-identical population of eight degree-of-freedom
(DOF) systems. To account for greater differences among the nominally-identical sys-
tems, an overlapping mixture of Gaussian processes (OMGP) [18], was used in [1, 19], to
infer multivalued wind-turbine power-curve data, with unsupervised categorisation of the
data. The OMGP approach [18] was again used in [20] to develop a population form for
real and imaginary FRFs, obtained from four nominally-identical, full-scale, composite
helicopter blades. In [21,22], hierarchical Bayesian models were used to improve the
predictive capability of simulated [21], and in-service [22], truck fleet hazard models,
and wind turbine power curves [22]. It was shown that when populations of structures
were allowed to share correlated information, model uncertainty was reduced [21,22].
In addition, domains with incomplete data were able to borrow statistical strength from
data-rich groups [21,22].

Current work has involved extending the FRF-based population form to include a
hierarchical Bayesian modelling structure, where a combined probabilistic FRF model is
developed using vibration data from the small population of nominally-identical helicopter
blades introduced in [20]. This paper presents a brief overview of the current work,
including two case studies. The first case study utilised FRFs collected from all four
blades, at ambient laboratory temperature, with variations among the blades resulting
from manufacturing differences (e.g., small discrepancies in material properties and



geometry) and boundary conditions. Limited training data that did not fully characterise
the resonance peaks were taken from two of the FRFs, while sufficient training data
were taken from the remaining two FRFs, so that information could be shared with the
data-poor domains via shared distributions over the parameters. Independent models
were generated for comparison, to visualise the variance reduction from the combined
model. The second case study considered vibration data from one of the helicopter
blades collected at various temperatures in an environmental chamber. A probabilistic
FRF model was again developed using a hierarchical approach. Functional relationships
between temperature and the modal parameters were incorporated into the model. The
learned functions were then used to extrapolate to temperatures not used to train the
model, and model accuracy was evaluated by comparing the results to FRFs computed
via measured vibration data.

HIERARCHICAL BAYESIAN MODELLING OF THE FRF

Hierarchical models can be used to make combined inferences, whereby domains
can be treated as separate; but, at the same time, it is assumed that each domain is a
realisation from a common process. This modelling structure involves partial pooling,
and is beneficial in that population-level distributions are informed by the full data set
comprised of multiple domains. In partial pooling, certain parameters are permitted to
vary between domains (i.e., varying parameters); which are correlated by conditioning
on parent variables at the population level. In this example, the natural frequency would
be a varying parameter. Other parameters can be considered shared among members
of a population (e.g., additive noise) and are learnt at the population level (these shared
variables can still be sampled from parent distributions, which are also learnt at the
population level). In contrast, a complete-pooling approach would consider all population
data as having originated from a single source, while a no-pooling approach would involve
fitting a single domain independently from the other domains.

Hierarchical models with partial pooling are particularly useful for PBSHM. Because
parameters are allowed to vary at the domain level (as opposed to complete pooling), this
approach can accommodate benign variations within a population. In addition, population-
level variables are informed by the full data set, rather than data from a single domain (no
pooling). This increase in statistical power is especially important in situations where one
or more domains have limited data [21-23]. In such cases, parameters from the data-poor
domains exhibit shrinkage towards the population mean (therefore borrowing information
from the other domains), which tightens the parameter variance [21-23].

For the current work, probabilistic FRF models for the helicopter blades were de-
veloped using a hierarchical approach with partial-pooling. Note that only the real part
of the FRF was considered, to simplify the analysis, although the imaginary part could
be learnt using the same methods or inferred (at least in part), by exploiting the causal
relationship between the real and imaginary components of the FRF [24]. Models were
developed using the probabilistic programming language Stan. Analyses were per-
formed using MCMC, via the no U-turn (NUTS) implementation of Hamiltonian Monte
Carlo (HMC) [25,26]. HMC uses approaches based in differential geometry to generate
transitions that span the full marginal variance, so it is not susceptible to the random walk
behaviour that can occur with other samplers [26].



For domains k& € {1, ..., K}, given frequency inputs, wy, and accelerance outputs,
Hj., the population data can be denoted as,
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where {w;, H;,} are the it" pair of observations in domain k. Each domain (which are
each comprised of data from a single FRF), is comprised of NV observations, giving a
total of Zszl N observations. Then, considering only the real component of the FREF, the
objective is to learn a set of K predictors (one for each domain), related to the regression
task, where the tasks satisfy,
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where for each observation i, the output is determined by evaluating one of K latent
functions, f; (w; k), plus additive noise, ¢; ;. While each of the £ groups can be learned
independently, a combined inference can be used to take advantage of the full Zle Ny,
population data set. The (real) FRFs were modelled probabilistically with an assumed
Gaussian distribution, with likelihood,

where f};, (wy,) is equal to the real component of the accelerance FRF, calculated via an
estimation based on modal parameters,
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where A,, is the residue for mode m, defined as the product of the mass-normalised mode
shapes [24]. Note that the residue is not indexed by k; this is because it was treated as a
shared variable among the different FRFs for both case studies. The natural frequency
associated with the kth FRF for mode m is denoted as w"7", and the modal damping
associated with the kth FRF for mode m is (j ,,, [24].

A shared hierarchy of prior distributions was placed over the modal parameters, in
line with a Bayesian framework. To allow information to flow between domains, parent
nodes were learnt at the population level. Some parameters were assumed shared among
domains, and were therefore also learnt at the population level (e.g., noise variance).
Extension of hierarchical Bayesian modelling to FRFs for the purpose of PBSHM has
been explored via two cases studies. A brief overview of these cases is provided below.

Case 1: FRFs from Multiple Nominally-Identical Structures

The first case used FRFs collected from four full-scale, composite, nominally-identical
helicopter blades, with variations among the blades resulting from manufacturing dif-
ferences (e.g., small discrepancies in material properties and geometry), and boundary
conditions. The FRFs were computed from vibration data collected at ambient laboratory
temperature, with the blades in an approximately fixed-free boundary condition (for a
more detailed discussion of these tests, see [20]). All experiments used in this analysis
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Figure 1. Graphical representation of the hierarchical FRF model developed for the first case.
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were performed at the Laboratory for Verification and Validation (LVV) in Sheffield, UK,
using Siemens PLM LMS SCADAS hardware and software. To highlight the benefits
of hierarchical modelling (specifically, variance shrinkage towards the population mean,
particularly when data are sparse), limited training data that did not fully characterise the
resonance peaks were taken from two of the FRFs, while sufficient training data were
taken from the remaining two FRFs. This situation is representative of incomplete data
in the time domain, which would reduce the number of spectral lines in the frequency
domain.

To simplify the analysis, a narrow frequency band was selected between 24 and 61
Hz, with the fourth and fifth bending modes of the blades dominating the response in this
band. A combined probabilistic FRF model was then generated according to the graphical
model shown in Figure 1. Independent models were also computed to demonstrate the
variance reduction achieved using the partial-pooling technique. FRFs for each blade
were computed via Eq. (4), from the samples of the modal parameters. Total variance
was estimated by adding the standard deviation of the FRFs to the expectation of the
noise variance. Posterior predictive mean and 3-sigma deviation for the partial pooling
and independent models are plotted in Figures 2a to 2d, respectively, and show that by
borrowing information from data-rich domains (Figures 2a and 2b), within the population,
the variance for the data-poor FRFs (Figures 2c¢ and 2d) was reduced compared to
independent modelling.

Case 2: FRFs from a Single Structure with Temperature Variation

The second case used FRFs computed from data collected in an environmental
chamber at temperatures ranging from -20 to 30°C in increments of 5°C), from a single
blade in an approximately fixed-free boundary condition. Testing was again performed at
the LVV in Sheffield, UK. A probabilistic FRF model was developed using a hierarchical
and partial-pooling approach, to accommodate the changes resulting from temperature
variations, according to the graphical model shown in Figure 3. To simplify the analysis,
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Figure 2. Posterior predictive mean and 3-sigma deviation for independent (no-pooling) and partial-pooling
models, (a) Blade 1 (blue), (b) Blade 2 (red), (c) Blade 3 (green) and (d) Blade 4 (purple). Training data
are shown in a black scatter plot. Posterior predictive means are shown as solid and dashed lines for the
partial-pooling and independent models, respectively. The variance is represented by shaded regions, where
the independent model variances are shown in a lighter color than those for the partial-pooling models.

a narrow frequency band was selected between 135 and 155 Hz, with a higher-order
bending mode of the blade dominating the response in this band. The relationships
between temperature and natural frequency, and between temperature and damping, were
represented using Taylor series expansions (first and second order expansions for natural
frequency and damping, respectively). Polynomial coefficients were determined for the
temperature-varied FRFs, using a subset of the FRFs as training data.

Predictions were then made at ‘unseen’ temperatures (not used in training) using the
expectation of population-level variables, and compared to measured FRFs to evaluate
model accuracy. The extrapolated FRFs are shown in Figure 4, ranging from -20 to 30°C
in increments of 5°C, with decreasing temperature from left to right (as natural frequency
increases with decreasing temperature). In Figure 4, the extrapolated FRFs are shown as
solid blue lines, with a shaded blue region indicating the variance bounds. The measured
FRFs used to train the model (without added noise), are shown as solid red lines, and
the measured FRFs used to test the model at ‘unseen’ temperatures are shown as dashed
black lines. From the figure, it is clear that excellent agreement was achieved between the
extrapolated and measured FRFs at the temperatures used to train the model, as expected.
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Figure 3. Graphical representation of hierarchical FRF model for the second case.

Likewise, the FRFs at temperatures between those used to train the model (e.g., at 0°C
and 15°C) show excellent agreement. Notably, the FRFs at colder temperatures (further
away from the training data) still show good agreement. Detailed discussions of the cases
presented herein can be found in [27].

CONCLUSIONS

Ongoing work involves the development of probabilistic FRF models using a hier-
archical Bayesian approach, that account for benign variations and similarities among
nominally-identical structures. Brief overviews of two cases were presented. The first
case demonstrated how this modelling approach can reduce variance in data-poor domains
by allowing information transfer with data-rich domains, via shared population-level
distributions. The second case showed that including functional relationships in the mod-
elling structure to describe temperature variations allows prediction beyond the training
data. Future work will investigate the structure of the data and hierarchical models.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the support of the UK Engineering and Physical
Sciences Research Council (EPSRC), via grant reference EP/W005816/1. This research
made use of The Laboratory for Verification and Validation (LVV), which was funded by
the EPSRC (via EP/J013714/1 and EP/N010884/1), the European Regional Development
Fund (ERDF), and the University of Sheffield. For the purpose of open access, the authors
have applied a Creative Commons Attribution (CC BY) licence to any Author Accepted
Manuscript version arising.

The authors would like to extend special thanks to Michael Dutchman of the LVYV,
for helping set up the experiments, and also Domenic Di Francesco of the Alan Turing
Institute, for his advice when designing the hierarchical models.



o
[\]
1

<
—

o
o

Accelerance Real [g/N]

1 1
S
[\ —

1 1

|

<

w
1

135 140 145 150 155
Frequency [Hz|

Figure 4. Extrapolated FRFs using population-level variables. The extrapolated means are shown as solid
blue lines, with shaded blue regions indicating variance bounds (3-sigma deviation). Solid red lines are the
FRFs used for training the model, while dashed black lines are the measured FRFs at ‘unseen’ temperatures.
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