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ABSTRACT

Failure of assets, such as machines, engines, or equipment, can cause significant loss
to an enterprise. Real-time monitoring of the asset operation and early detection of
failure could guide mechanics or engineers to check the assets in time and reduce the
chance of a breakdown. With the availability of Internet of Things (IoT) technologies
and the development of machine learning, predictive maintenance has become an
effective way to monitor asset performance and detect anomalies using sensor data and
historical information. However, many use cases need more information to evaluate the
results. Lack of validation can undermine confidence in predictive results. To solve
this problem, a novel alert trigger schema that integrates sensor fusion, feature
extraction, machine learning, ensemble strategy, and an alert format is proposed. The
method offers a comprehensive and reliable approach to detecting anomalies based on
unlabeled data, utilizing sensor and decision-level fusion techniques. Meanwhile, eight
anomaly detection techniques were investigated, including K-Means Clustering,
Gaussian Mixture Model, Autoencoder, and Isolation Forest. Various algorithms
generate results with differing degrees of confidence. These results are consolidated into
a single indicator representing the alert level. This amalgamation of data ensures the
provision of robust and reliable predictions. Instead of simply combing the alert
information, confidence in different algorithms is reflected in adding different weights
in the ensemble process. In addition, while other existing frameworks focus on
evaluating the algorithm’s accuracy, more effort was put into demonstrating a level-
based alert system, showing diagnosis changing with time. In that way, mechanics or
engineers can get information to check the asset’s status. The proposed framework was
validated using a synthetic dataset based on recordings from a rotating fault simulator
that generates multi-modal data, including accelerometer, acoustic, and tachometer data,
representing the run state of the rotating components. The alert system showed different
levels of warning for predictive maintenance. The framework is designed with high
flexibility and scalability. Therefore, this framework can be generalized to other in situ-
sensor data from various assets.
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INTRODUCTION

Failure of critical assets, such as machines, engines, or equipment, can cause
significant loss to an enterprise. It is crucial to detect defects early and implement proper
maintenance to minimize the aftermath of system malfunctions. Traditionally, routine
maintenance is made to help keep equipment operating smoothly. This is referred to as
preventive maintenance. Preventive maintenance is typically scheduled using empirical
rules and statistical data, which could include data on the estimated lifespan of each
component or may be based on the occurrence of previous component failures.
However, in preventative maintenance, the actual internal operating conditions and
external environmental factors are often overlooked [1], leading to a possibility of over
or underestimating the necessary period for upkeep. Predictive maintenance (PdM)
provides a promising solution to all these problems.

PdM also known as "online monitoring,” "risk-based maintenance," or “condition-
based maintenance,"” is a maintenance approach that uses asset conditions as a basis for
scheduling maintenance tasks [2]. Through real-time asset operation monitoring, we
preemptively take measures to prevent failures and only schedule maintenance tasks
when necessary [3, 4]. Contemporary PdM techniques use data-driven approaches and
incorporate various advanced methods derived from data management and machine
learning. Machine learning approaches are effectively applied in areas with much sensor
data. Machine Learning-based PdM can be broadly categorized into two main classes:
supervised and unsupervised. In supervised PdM, the dataset used for modeling contains
failure information, while in unsupervised PdM, there is only logistic or process
information to be utilized [5]. In this work, we intend to develop an alert trigger system
for predictive maintenance based on unlabeled data. Here unsupervised machine
learning method is used to distinguish normal and anomalous behavior of the target
feature or component. This is commonly known as anomaly detection.

Anomaly detection refers to “the problem of finding patterns in data that do not
conform to expected behavior” [6, 7]. Detecting anomalies is a critical tool in various
applications, such as intrusion detection for cyber-security, fraud detection for credit
cards, monitoring of medical conditions, and fault detection for aviation safety studies.
The advent of Internet of Things (IoT) technologies has made collecting vast amounts
of sensor data possible. Consequently, more sophisticated machine learning algorithms
have been developed to leverage historical data to capture the system's behavior. In
machine learning, anomaly detection is often categorized as unsupervised learning.
Standard anomaly detection algorithms include K-Means Clustering, Isolation Forest,
Autoencoder, etc. However, each algorithm has its limitations. A lack of benchmark
data could make it hard to select the optimal algorithm and undermine confidence in
predictive accuracy. To solve this problem, a novel alert trigger schema that integrates
sensor fusion, feature extraction, machine learning, ensemble strategy, and an alert
format is proposed. This method offers a comprehensive and reliable approach to
detecting anomalies based on unlabeled data, utilizing sensor and decision-level fusion
techniques. Including multiple anomaly detection techniques and using weights based
on confidence level ensure accurate and robust predictions. The emphasis on a level-
based alert system enables mechanics or engineers to monitor the asset's status over
time, making it a valuable tool for PdM.

The proposed framework was validated using a synthetic time series dataset
generated based on recordings from a rotating fault simulator to represent run state of



the rotating components. Multi-modal data including accelerometer, acoustic, and
tachometer data are collected. By integrating an alert system, the framework exhibited
varying levels of warnings for PAM. Furthermore, its high flexibility and scalability
enable it to be easily adapted to other in situ-sensor data from diverse assets.

The remainder of this work is organized as follows: Section 2 provides a brief review
of the anomaly detection algorithms relevant to this study. Section 3 presents a detailed
description of the proposed schema. In Section 4, the effectiveness of the proposed
approach is demonstrated on the fault simulator dataset. Finally, Section 5 offers
concluding remarks and discusses future research plans pertaining to this topic.

RELATED WORKS

Our work involves implementing eight commonly used unsupervised anomaly
detection algorithms to identify anomalies. This section focuses on briefly reviewing
and evaluating these anomaly detection techniques. Popular anomaly detection
techniques include cluster-based algorithms such as K-Means Clustering, Gaussian
Mixture Model, and DBSCAN. These methods group data points based on their
similarities, either by distance (K-Means Clustering) or density (Gaussian Mixture
Model and DBSCAN). Outliers are determined by how far they extend from a cluster
group. Another approach to detect anomalies is by using transformation techniques such
as Principal Component Analysis (PCA) and Autoencoder. In these methods, data
points with reconstruction loss above a set threshold are identified and labeled as
anomalous. It is worth noting that there are some anomaly detection algorithms that
derived from supervised learning techniques but are used for unsupervised learning.
One example is the Isolation Forest anomaly detection machine learning algorithm,
which is developed from Random Forest and uses a tree-based approach to isolate
anomalies. Unlike most model-based anomaly detection approaches that profile normal
instances and identify instances that do not conform to the normal profile, Isolation
Forest better captures the key essence of anomalies: the concept of "few and different”
[8]. Another example is the one-class Support Vector Machine (SVM) algorithm, which
involves a single class of data points, and the task is to predict a hypersphere that
separates the cluster of data points from the anomalies. And lastly, the Mahalanobis
Distance is a highly effective multivariate distance metric that quantifies the distance
between a point and a distribution. It is commonly used to identify data points that are
significantly different from the normal distribution profile.

METHODOLOGY

In the previous section, we discussed some popular anomaly detection algorithms,
but each algorithm has its own limitations. For instance, K-Means Clustering may not
work well when clusters have irregular shapes [9], Isolation Forest may only detect local
anomaly point [10], and Autoencoders may lose important information in the input data
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Figure 1. Visualization of the data analysis pipeline

due to their sensitivity to input errors. The performance of an algorithm depends on the
underlying data structure. To achieve reliable and robust, a novel alert trigger schema is
proposed that combines sensor fusion, feature extraction, machine learning, ensemble
strategy, and an alert format.

This project aims to detect anomalies in unlabeled multi-variate time series data by
utilizing sensor fusion and decision level fusion techniques. In the proposed alert trigger
system, different types and formats of data, are preprocessed and integrated into a single
Data Frame. Next, a couple of steps such as feature extraction, and dimension reduction
may be required to transform the data. Once the data is in a unified view, it can be fed
into a model for analysis, such as failure prediction, anomaly detection, and Remaining
Useful Life (RUL) analysis. Figure 1 illustrates the top-level block diagram of the data
analysis pipeline. It is important to note that each type of analysis may require a different
model and specific preprocessing steps tailored to the problem at hand.

The crucial part of the alert trigger system is the decision-level fusion. The results of
eight popular anomaly detection algorithms with varying degrees of confidence are
merged into a single indicator and then normalized to an anomaly score. To enhance the
ensemble process, different weights are assigned to each algorithm based on its
confidence level. Moreover, the anomaly scores are divided into four categories
representing different trigger levels. The emphasis on a level-based alert system enables
mechanics or engineers to monitor the asset's status over time. The general process for
applying the system to a dataset is shown in Figure 2.

Figure 2 illustrates that each anomaly detector labels the data instance as either 0 (no
anomaly detected) or 1 (anomaly detected). The normalized anomaly score at a
particular instance is then obtained through a weighted average of the labels from

Schema of the Trigger System
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Figure 2. Schema of ensemble learning-based alert trigger system



multiple anomaly detectors, as described below:

sore= (3w () g

where for a total of n anomaly detectors, w; is the user defined weight assigned for the
i'th detector, and f; is the label obtained from the i’th detector. Note that the range of
the normalized score is between 0 and 1. When the score is 0, we consider the target
component or system is healthy (T0). Otherwise, the level of alert is triggered following
with the user selected rule below:

T1, 0 < Score<1/3
Trigger = { T2, 1/3 < Score <2/3 2
T3, 2/3 < Score< 1

CASE STUDY

The effectiveness of the proposed framework was validated using a synthetic time
series dataset generated based on recordings from a rotating test bench fault simulator.
This section describes the experimental setup, outlines the process for generating
training and testing data, and presents the results of the evaluation.

Experimental Setting

To gain a comprehensive understanding of different vibration signatures, controlled
experiments were conducted using a Machinery Fault Simulator (MFS)[11] that
emulates real-world industrial machinery. According to our research interests, various
test kits are available for data collection. In this project, we used the following
configuration in MFS: a Centrally Balanced Rotor with faults induced at the 3/4" Shaft
Bearing (including No Fault, Ball Fault, Inner Race Fault, Outer Race Fault, and
Combination Bearing Fault), a rotational speed of 1800 rpm, and a sample rate of 10k.
We collected signals from three types of sensors: microphones (8), accelerometers (3
for “XYZ” axis), and a tachometer (1). Each run lasted 60 seconds, with 6 runs for the
Healthy condition and 3 runs for each of fault condition. This configuration enabled us
to collect a comprehensive dataset for analysis and testing. Figure 3 shows the MFS
experimental setup and configuration.

Machinery Fault Simulator 1800rpm, 10kHz

acoustic 3/4" Bearing

Healthy H
Ball Fault BF
» Inner Race Fault IRF
Outer Race Fault ORF
Combination Bearing Fault CBF

Figure 3. Experimental setup and data collection



Dataset

Training and testing data were synthesized based on the recordings. Considering that
the healthy signals are stationary and pure, we contaminated a portion of normal signals
with abnormal instances for model training. For the test dataset, by interleaving periods
of time series from healthy and unhealthy simulated data, the team created a 3 second
miniature sample dataset representative of the run state of an asset. Figure 4 displays a
sample for an acoustic data channel. In this plot, initially the response is stationary
(similar to the healthy dataset), which is attributed to normal asset performance. Next,
the asset signal begins to display a deviation from normal operation. As the time passes,
issues in the asset starts to increase and at the end of the select sample we can visually
detect a failure.

Results

The effectiveness of the proposed framework was validated using the dataset
discussed earlier. The performance of each algorithm relies on the underlying data
structure, which, in our case, is closely linked to the failure mode. As a result, our
confidence (reflected on weights) in each algorithm may differ based on the failure
mode concealed within the testing data. When Ball Fault was employed as the failure
type, we observed that the Autoencoder, Gaussian Mixture Model, and Isolation Forest
algorithms were better able to identify outliers, resulting in a higher weight assignment.
In this case, these three algorithms were assigned the weight “2”, while other algorithms
were given weight “1”. Note the choice of weights are user dependent and can be
changed upon based on application of the technique.

In our case, we obtain predictions from eight anomaly detectors at each time step,
which are integrated into a normalized anomaly score and then categorized to three
trigger levels using the rule described in Equation 2. The Excel file generated by the
ensemble trigger system for inspection is structured as shown in Figure 2 and can be
visualized as demonstrated in Figure 5. In Figure 5, the top signal represents the acoustic
channel, while the eight dotted lines depict the anomalies detected by the eight anomaly
detectors. The anomaly detectors, arranged from top to bottom, include K-means
Clustering (KM), Gaussian Mixture Model (GMM), DB Scan (DB), Autoencoder
(ATE), PCA, Isolation Forest (IF), Support Vector Machine (SVM), and Mahalanobis
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Figure 5. A Visualization of Alert Trigger System

Distance (MAH). Although the predictions generally align, there are slight variations
among them. The star line below indicates the different levels of alert from the ensemble
model, with "orange," "red," and "purple" representing increasing levels of alertness.
Towards the bottom, a bar chart is generated for each 0.6-second window, starting from
0.6 seconds. This bar plot illustrates the anomaly indicator (trigger levels) and their
concentrations. Within each bar chart, the bars are labeled TO, T1, T2, and T3, from left
to right. In the histogram, the majority of the samples are located at TO. However,
subsequent plots reveal an increasing number of samples moving towards T1, T2, and
T3. Notably, in the final plot, high concentrations of anomalies are observed in T2 and
T3. This series of bar plots demonstrates how the asset progresses from a normal state
to failure. Based on the distribution of trigger levels, inspectors can make informed
decisions regarding the condition of the asset.

CONCLUSIONS

This study presents an ensemble-learning based alert trigger system that integrates
sensor fusion, feature extraction, machine learning, ensemble strategy, and an alert
format is presented. The framework is designed with high flexibility and scalability. We
applied this procedure to a synthetic dataset generated from MSF recordings to evaluate
its effectiveness. Using this alert trigger system, we can produce an Excel file containing



diagnoses from eight anomaly detectors and the ensemble model to inform predictive
maintenance. Although we have only used acoustic, accelerometer, and tachometer data
due to the lack of image data, we plan to incorporate image data in the future to
demonstrate its ability to process different types of data.

The data collected from MSF are drawn at a high frequency of 10kHz, making it
impractical to conduct health monitoring directly on the raw data. Moving forward, we
intend to simulate an extended dataset and leverage the recorded datasets as labeled
samples of failures. This will enable us to evaluate the effectiveness of our system in
detecting failures.
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