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ABSTRACT 
 

Failure of assets, such as machines, engines, or equipment, can cause significant loss 
to an enterprise. Real-time monitoring of the asset operation and early detection of 
failure could guide mechanics or engineers to check the assets in time and reduce the 
chance of a breakdown. With the availability of Internet of Things (IoT) technologies 
and the development of machine learning, predictive maintenance has become an 
effective way to monitor asset performance and detect anomalies using sensor data and 
historical information. However, many use cases need more information to evaluate the 
results. Lack of validation can undermine confidence in predictive results. To solve 
this problem, a novel alert trigger schema that integrates sensor fusion, feature 
extraction, machine learning, ensemble strategy, and an alert format is proposed. The 
method offers a comprehensive and reliable approach to detecting anomalies based on 
unlabeled data, utilizing sensor and decision-level fusion techniques. Meanwhile, eight 
anomaly detection techniques were investigated, including K-Means Clustering, 
Gaussian Mixture Model, Autoencoder, and Isolation Forest. Various algorithms 
generate results with differing degrees of confidence. These results are consolidated into 
a single indicator representing the alert level. This amalgamation of data ensures the 
provision of robust and reliable predictions. Instead of simply combing the alert 
information, confidence in different algorithms is reflected in adding different weights 
in the ensemble process. In addition, while other existing frameworks focus on 
evaluating the algorithm’s accuracy, more effort was put into demonstrating a level- 
based alert system, showing diagnosis changing with time. In that way, mechanics or 
engineers can get information to check the asset’s status. The proposed framework was 
validated using a synthetic dataset based on recordings from a rotating fault simulator 
that generates multi-modal data, including accelerometer, acoustic, and tachometer data, 
representing the run state of the rotating components. The alert system showed different 
levels of warning for predictive maintenance. The framework is designed with high 
flexibility and scalability. Therefore, this framework can be generalized to other in situ- 
sensor data from various assets. 
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INTRODUCTION 
 

     Failure of critical assets, such as machines, engines, or equipment, can cause 

significant loss to an enterprise. It is crucial to detect defects early and implement proper 

maintenance to minimize the aftermath of system malfunctions. Traditionally, routine 

maintenance is made to help keep equipment operating smoothly. This is referred to as 

preventive maintenance. Preventive maintenance is typically scheduled using empirical 

rules and statistical data, which could include data on the estimated lifespan of each 

component or may be based on the occurrence of previous component failures. 

However, in preventative maintenance, the actual internal operating conditions and 

external environmental factors are often overlooked [1], leading to a possibility of over 

or underestimating the necessary period for upkeep. Predictive maintenance (PdM) 

provides a promising solution to all these problems.  

     PdM also known as "online monitoring," "risk-based maintenance," or "condition-

based maintenance," is a maintenance approach that uses asset conditions as a basis for 

scheduling maintenance tasks [2]. Through real-time asset operation monitoring, we 

preemptively take measures to prevent failures and only schedule maintenance tasks 

when necessary [3, 4]. Contemporary PdM techniques use data-driven approaches and 

incorporate various advanced methods derived from data management and machine 

learning. Machine learning approaches are effectively applied in areas with much sensor 

data. Machine Learning-based PdM can be broadly categorized into two main classes: 

supervised and unsupervised. In supervised PdM, the dataset used for modeling contains 

failure information, while in unsupervised PdM, there is only logistic or process 

information to be utilized [5]. In this work, we intend to develop an alert trigger system 

for predictive maintenance based on unlabeled data. Here unsupervised machine 

learning method is used to distinguish normal and anomalous behavior of the target 

feature or component. This is commonly known as anomaly detection. 

     Anomaly detection refers to “the problem of finding patterns in data that do not 

conform to expected behavior” [6, 7]. Detecting anomalies is a critical tool in various 

applications, such as intrusion detection for cyber-security, fraud detection for credit 

cards, monitoring of medical conditions, and fault detection for aviation safety studies. 

The advent of Internet of Things (IoT) technologies has made collecting vast amounts 

of sensor data possible. Consequently, more sophisticated machine learning algorithms 

have been developed to leverage historical data to capture the system's behavior. In 

machine learning, anomaly detection is often categorized as unsupervised learning. 

Standard anomaly detection algorithms include K-Means Clustering, Isolation Forest, 

Autoencoder, etc. However, each algorithm has its limitations. A lack of benchmark 

data could make it hard to select the optimal algorithm and undermine confidence in 

predictive accuracy. To solve this problem, a novel alert trigger schema that integrates 

sensor fusion, feature extraction, machine learning, ensemble strategy, and an alert 

format is proposed. This method offers a comprehensive and reliable approach to 

detecting anomalies based on unlabeled data, utilizing sensor and decision-level fusion 

techniques. Including multiple anomaly detection techniques and using weights based 

on confidence level ensure accurate and robust predictions. The emphasis on a level-

based alert system enables mechanics or engineers to monitor the asset's status over 

time, making it a valuable tool for PdM.  

     The proposed framework was validated using a synthetic time series dataset 

generated based on recordings from a rotating fault simulator to represent run state of 



the rotating components. Multi-modal data including accelerometer, acoustic, and 

tachometer data are collected. By integrating an alert system, the framework exhibited 

varying levels of warnings for PdM. Furthermore, its high flexibility and scalability 

enable it to be easily adapted to other in situ-sensor data from diverse assets. 

     The remainder of this work is organized as follows: Section 2 provides a brief review 

of the anomaly detection algorithms relevant to this study. Section 3 presents a detailed 

description of the proposed schema. In Section 4, the effectiveness of the proposed 

approach is demonstrated on the fault simulator dataset. Finally, Section 5 offers 

concluding remarks and discusses future research plans pertaining to this topic. 

 

 

RELATED WORKS 

 

Our work involves implementing eight commonly used unsupervised anomaly 

detection algorithms to identify anomalies. This section focuses on briefly reviewing 

and evaluating these anomaly detection techniques. Popular anomaly detection 

techniques include cluster-based algorithms such as K-Means Clustering, Gaussian 

Mixture Model, and DBSCAN. These methods group data points based on their 

similarities, either by distance (K-Means Clustering) or density (Gaussian Mixture 

Model and DBSCAN). Outliers are determined by how far they extend from a cluster 

group. Another approach to detect anomalies is by using transformation techniques such 

as Principal Component Analysis (PCA) and Autoencoder. In these methods, data 

points with reconstruction loss above a set threshold are identified and labeled as 

anomalous. It is worth noting that there are some anomaly detection algorithms that 

derived from supervised learning techniques but are used for unsupervised learning. 

One example is the Isolation Forest anomaly detection machine learning algorithm, 

which is developed from Random Forest and uses a tree-based approach to isolate 

anomalies. Unlike most model-based anomaly detection approaches that profile normal 

instances and identify instances that do not conform to the normal profile, Isolation 

Forest better captures the key essence of anomalies: the concept of "few and different" 

[8]. Another example is the one-class Support Vector Machine (SVM) algorithm, which 

involves a single class of data points, and the task is to predict a hypersphere that 

separates the cluster of data points from the anomalies. And lastly, the Mahalanobis 

Distance is a highly effective multivariate distance metric that quantifies the distance 

between a point and a distribution. It is commonly used to identify data points that are 

significantly different from the normal distribution profile. 

 

 

METHODOLOGY 

 

     In the previous section, we discussed some popular anomaly detection algorithms, 

but each algorithm has its own limitations. For instance, K-Means Clustering may not 

work well when clusters have irregular shapes [9], Isolation Forest may only detect local 

anomaly point [10], and Autoencoders may lose important information in the input data  

 

 



 
 

Figure 1. Visualization of the data analysis pipeline 
 

 

due to their sensitivity to input errors. The performance of an algorithm depends on the 

underlying data structure. To achieve reliable and robust, a novel alert trigger schema is 

proposed that combines sensor fusion, feature extraction, machine learning, ensemble 

strategy, and an alert format. 

     This project aims to detect anomalies in unlabeled multi-variate time series data by 

utilizing sensor fusion and decision level fusion techniques. In the proposed alert trigger 

system, different types and formats of data, are preprocessed and integrated into a single 

Data Frame. Next, a couple of steps such as feature extraction, and dimension reduction 

may be required to transform the data. Once the data is in a unified view, it can be fed 

into a model for analysis, such as failure prediction, anomaly detection, and Remaining 

Useful Life (RUL) analysis. Figure 1 illustrates the top-level block diagram of the data 

analysis pipeline. It is important to note that each type of analysis may require a different 

model and specific preprocessing steps tailored to the problem at hand. 

    The crucial part of the alert trigger system is the decision-level fusion. The results of 

eight popular anomaly detection algorithms with varying degrees of confidence are 

merged into a single indicator and then normalized to an anomaly score. To enhance the 

ensemble process, different weights are assigned to each algorithm based on its 

confidence level. Moreover, the anomaly scores are divided into four categories 

representing different trigger levels.  The emphasis on a level-based alert system enables 

mechanics or engineers to monitor the asset's status over time. The general process for 

applying the system to a dataset is shown in Figure 2.  

    Figure 2 illustrates that each anomaly detector labels the data instance as either 0 (no 

anomaly detected) or 1 (anomaly detected). The normalized anomaly score at a 

particular instance is then obtained through a weighted average of the labels from  

 

 

 
 

Figure 2. Schema of ensemble learning-based alert trigger system 

 

 



multiple anomaly detectors, as described below:     
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where for a total of 𝑛 anomaly detectors, 𝑤𝑖 is the user defined weight assigned for the 

𝑖′th detector, and  𝑓𝑖 is the label obtained from the 𝑖′th detector. Note that the range of 

the normalized score is between 0 and 1. When the score is 0, we consider the target 

component or system is healthy (T0). Otherwise, the level of alert is triggered following 

with the user selected rule below: 

 

𝑇𝑟𝑖𝑔𝑔𝑒𝑟 =  {
𝑇1,          0 < 𝑆𝑐𝑜𝑟𝑒 ≤ 1 3⁄  

   𝑇2,         1 3⁄ < 𝑆𝑐𝑜𝑟𝑒 ≤ 2 3⁄

𝑇3,         2 3⁄ < 𝑆𝑐𝑜𝑟𝑒 ≤  1
 (2) 

 

 

CASE STUDY 

 

    The effectiveness of the proposed framework was validated using a synthetic time 

series dataset generated based on recordings from a rotating test bench fault simulator. 

This section describes the experimental setup, outlines the process for generating 

training and testing data, and presents the results of the evaluation. 

 

Experimental Setting 

 

    To gain a comprehensive understanding of different vibration signatures, controlled 

experiments were conducted using a Machinery Fault Simulator (MFS)[11] that 

emulates real-world industrial machinery. According to our research interests, various 

test kits are available for data collection. In this project, we used the following 

configuration in MFS: a Centrally Balanced Rotor with faults induced at the 3/4" Shaft 

Bearing (including No Fault, Ball Fault, Inner Race Fault, Outer Race Fault, and 

Combination Bearing Fault), a rotational speed of 1800 rpm, and a sample rate of 10k. 

We collected signals from three types of sensors: microphones (8), accelerometers (3 

for “XYZ” axis), and a tachometer (1). Each run lasted 60 seconds, with 6 runs for the 

Healthy condition and 3 runs for each of fault condition. This configuration enabled us 

to collect a comprehensive dataset for analysis and testing. Figure 3 shows the MFS 

experimental setup and configuration. 

 

 

 
 

Figure 3. Experimental setup and data collection 



Dataset 

 

    Training and testing data were synthesized based on the recordings. Considering that 

the healthy signals are stationary and pure, we contaminated a portion of normal signals 

with  abnormal instances for model training. For the test dataset, by interleaving periods 

of time series from healthy and unhealthy simulated data, the team created a 3 second 

miniature sample dataset representative of the run state of an asset. Figure 4 displays a 

sample for an acoustic data channel. In this plot, initially the response is stationary 

(similar to the healthy dataset), which is attributed to normal asset performance. Next, 

the asset signal begins to display a deviation from normal operation. As the time passes, 

issues in the asset starts to increase and at the end of the select sample we can visually 

detect a failure.  

 

 

Results 

 

    The effectiveness of the proposed framework was validated using the dataset 

discussed earlier. The performance of each algorithm relies on the underlying data 

structure, which, in our case, is closely linked to the failure mode. As a result, our 

confidence (reflected on weights) in each algorithm may differ based on the failure 

mode concealed within the testing data. When Ball Fault was employed as the failure 

type, we observed that the Autoencoder, Gaussian Mixture Model, and Isolation Forest 

algorithms were better able to identify outliers, resulting in a higher weight assignment. 

In this case, these three algorithms were assigned the weight “2”, while other algorithms 

were given weight “1”. Note the choice of weights are user dependent and can be 

changed upon based on application of the technique.  

    In our case, we obtain predictions from eight anomaly detectors at each time step, 

which are integrated into a normalized anomaly score and then categorized to three 

trigger levels using the rule described in Equation 2. The Excel file generated by the 

ensemble trigger system for inspection is structured as shown in Figure 2 and can be 

visualized as demonstrated in Figure 5. In Figure 5, the top signal represents the acoustic 

channel, while the eight dotted lines depict the anomalies detected by the eight anomaly 

detectors. The anomaly detectors, arranged from top to bottom, include K-means 

Clustering (KM), Gaussian Mixture Model (GMM), DB Scan (DB), Autoencoder 

(ATE), PCA, Isolation Forest (IF), Support Vector Machine (SVM), and Mahalanobis  

 

 

 
 

Figure 4. Synthetically generated signal representing asset normal life, failure initiation, and failure 



 
 

Figure 5. A Visualization of Alert Trigger System 

 

 

Distance (MAH). Although the predictions generally align, there are slight variations  

among them. The star line below indicates the different levels of alert from the ensemble 

model, with "orange," "red," and "purple" representing increasing levels of alertness. 

Towards the bottom, a bar chart is generated for each 0.6-second window, starting from 

0.6 seconds. This bar plot illustrates the anomaly indicator (trigger levels) and their 

concentrations. Within each bar chart, the bars are labeled T0, T1, T2, and T3, from left 

to right. In the histogram, the majority of the samples are located at T0. However, 

subsequent plots reveal an increasing number of samples moving towards T1, T2, and 

T3. Notably, in the final plot, high concentrations of anomalies are observed in T2 and 

T3. This series of bar plots demonstrates how the asset progresses from a normal state 

to failure. Based on the distribution of trigger levels, inspectors can make informed 

decisions regarding the condition of the asset. 

 

 

CONCLUSIONS 

 

    This study presents an ensemble-learning based alert trigger system that integrates 

sensor fusion, feature extraction, machine learning, ensemble strategy, and an alert 

format is presented. The framework is designed with high flexibility and scalability. We 

applied this procedure to a synthetic dataset generated from MSF recordings to evaluate 

its effectiveness. Using this alert trigger system, we can produce an Excel file containing 



diagnoses from eight anomaly detectors and the ensemble model to inform predictive 

maintenance. Although we have only used acoustic, accelerometer, and tachometer data 

due to the lack of image data, we plan to incorporate image data in the future to 

demonstrate its ability to process different types of data. 

    The data collected from MSF are drawn at a high frequency of 10kHz, making it 

impractical to conduct health monitoring directly on the raw data. Moving forward, we 

intend to simulate an extended dataset and leverage the recorded datasets as labeled 

samples of failures. This will enable us to evaluate the effectiveness of our system in 

detecting failures. 
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