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ABSTRACT

At present, most surface-quality prediction methods can only perform single-task pre-
diction [1] which results in under-utilised datasets, repetitive work and increased exper-
imental costs. To counter this, the authors propose a Bayesian hierarchical model to
predict surface-roughness measurements for a turning machining process. The hierar-
chical model is compared to multiple independent Bayesian linear regression models to
showcase the benefits of partial pooling in a machining setting with respect to prediction
accliracy and uncertainty quantification.

INTRODUCTION

One of the most important measures of workpiece quality in a machining process is the
surface finish, and one of the most important factors in surface finish is surface|rough-
ness. Surface roughness is a widely-used index of machined product quality [2] and a
high-quality surface finish can significantly improve the fatigue strength,corrosion re-
sistance and creep life of machined parts [3]. The surface finish is highly important
for the functional properties of parts; it has a large contribution to surface friction and
the susceptibility of the part to contact wear. Additionally, the literature suggests that
surface-roughness is a good indicator to estimate tool wear condition, which means ac-
curate estimates of the surface roughness can help inform a tool condition-monitoring
system [4—6]. Being able to predict surface roughness during the machining process is
very valuable for manufacturers. These predictions can help inform tool replacement or
inspection decision processes and reduce downtime and wasted material.

The literature showcases a wide range of modelling systems for-machining features.
Hidden Markov Models (HMMs), have been a popular choice [1, 7, 8]; however, these
models assume that observed values must be statistically independent of the previous
sequence; this may not be the case in machining. HMM’s can lose the information
between adjacent feature data which can sometimes deteriorate the recognition accu-
racy [9Q]. Other researchers have used neural networks (NNs) to good effect [10-12].
However, NNs generally require large datasets for training which can be expensive to
collect. Support Vector Machines (SVMs) are also popular but not without problems
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[13]. SVMs require a selection of the kernel function and some parameters that need to
be selected by trial and error; this can be tricky and leave the user with sub-optimal pa-
rameters [|14]]. Many other models have also been used such as fuzzy logic [15], artificial
neural network-based fuzzy inference systems [16]] and chain-conditional random-field
models [9]].

Because of the natural degradation of tools during the machining process, and its ef-
fect on surface finish, tools must be replaced regularly. While each tool may be produced
to the same specification and use the same materials, there will be variation within pop-
ulations of tools. The variation in the physical properties of the tools is associated with
variation in the behaviour between the tools; this can be an issue for standard modelling
techniques. However, this variation lends itself well to a hierarchical model, a class of
models that can account for variations within a population while taking advantage of the
statistical similarities between them. An additional benefit of hierarchical models is their
suitability to the online setting and sparse datasets; which is particularly useful for tool
condition monitoring where researchers made need to make predictions as soon as the
machining process has begun and with only a few data points to learn a model. Combin-
ing this with the usual benefits of Bayesian modelling (uncertainty quantification, prior
information etc.) gives rise to a potentially powerful monitoring system.

Hierarchical models have seen limited use in machining, Bombinski et al. high-
lighted the usefulness of hierarchical models by implemented a hierarchical neural network-
based monitoring system with signal fusion methods [17]. Han et al. used a hierarchi-
cal structure to improve the implementation of HMMs for tool-wear estimation [18]].
The hierarchical Dirichlet process-hidden Markov model showed greater accuracy when
compared to conventional HMMs. Following the obvious advantages of hierarchical
modelling for machining problems, the authors propose the use of a Bayesian hierarchi-
cal model. Specifically, a random intercepts and slopes model (also known as a mixed
effects model) to predict the surface roughness during machining.

CONTRIBUTION

Although Bayesian hierarchical models have seen success in other parts of engineering
[19-21]],the benefits of these models have not yet reached machining and tool health
monitoring. In this paper, the authors propose a random intercepts and slopes model to
show the modelling improvements of hierarchical models specifically, for sparse datasets
in machining.

THE DATA

The dataset analysed in this paper is from the turning process shown in Figure [T} The
workpiece is rotated around the z-axis and the tool makes four passes along the work-
piece. Each pass starts at point S and ends at point E. After four passes, the tool is
inspected, and measurements are taken of the workpiece and tool. The four passes and
measurements are repeated until tool failure. For full details of the experiment refer to
Wickramarachchi [22]].

The data to be analysed in this paper consists of the workpiece surface roughness
measurements from seven repeats of the experiment detailed above. After each experi-



ment the tool is replaced with a fresh tool. This data can be seen in Figure 2] The plots
show arithmetic mean ([?,) surface roughness measurements against sliding distance.
Sliding distance is how far the tool has traveled along the work piece, it is effectively a
measure of how long the tool has been machining for. R, surface roughness measures
the deviation of a surface from a theoretical centre line [23]].
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Figure 1. Schematic showing the experimental set up used for data acquisition .
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Figure 2. Experimental surface roughness measurements.



THE HIERARCHICAL MODEL

The explanation follows the description provided by Bull et al. [19]]. Consider machining
data, recorded from a population of A similar tools. The population data can be denoted,

K
{xx, Yk}szl = {{Izka yzk}ZN:kl} (1)

k=1
where v, is a target response vector for inputs zj, and {x, y;x. } are the i'™ pair of observa-
tions in group k. There are N, observations in each group and thus 22 | N, observations
in total. The aim is to learn a set of K predictors related to the regression task. This paper
focuses on regression, where the tasks satisfy,

{yir = fr (@) }rey (2

and the output y;; is determined by evaluating one of K latent functions. For the case of
linear regression, the mapping is denoted by,

T (@ir) = my (2r) + c + € 3)

where my, is the tool-specific gradient of the roughness, ¢, is the tool-specific intercept
and ¢, is the tool-specific noise. Where the noise is assumed to be e,~Cauchy (0, ;)
Together they form the set of /K predictors,

{Ckymlw Ek}?:]_ (4)

In this paper, comparisons will be made between a hierarchical model, where the
mapping fi is assumed to be correlated between tools and an independent model where
correlation is not assumed. For the independent model, the slope and intercept of each
tool are learned independently. A graphical model depicting the independent model can
be seen in Figure[3].

Since the mapping f; is assumed to be correlated between tools for the hierarchical
model, the model should be improved by learning the parameters in a joint inference
over the whole population. The hierarchical model learns a global distribution over the
tools and assumes the gradient and intercept associated with each tool is a sample from
this global distribution. In practice, while a tool that has been in use for some extended

Figure 3. A graphical model representing the independent model.



amount of time may have rich historical data, newly-replaced tools will have limited
training data. In this setting, learning separate, independent models for each group will
lead to unreliable predictions. On the other hand, a single regression of all the data
(complete pooling) will result in poor generalisation. Instead, hierarchical models can be
used to learn separate models for each group while encouraging tool-specific parameters
to be correlated (partial pooling). The likelihood for the model is,

{yik}le ~Cauchy (my, - i, + cx, Vi) (5)

Following the Bayesian methodology, one can set prior distributions over the slope
and intercept for the groups,

{mi}y_y ~Cauchy (tim, om) (6)
i ~ Carichy (fim, 5,,) ™)
om ~ HalfCauchy (0, s, ) (8)

where the slopes are Cauchy distibuted, with mean ,,, and standard deviation o,,,. Equa-
tion shows the prior expectation of the slopes is also Cauchy distributed with mean
fim, = 0 and standard deviation s, = 1. Equation shows that the prior deviation of
the slope is HalfCauchy distributed with scale parameter s, = 1.

{ex}iey ~Cauchy (pic, 0.) )
pte ~ Cauchy (fi, s,.,) (10)
0. ~ HalfCauchy (0, s,.) (11)

where the intercepts are Cauchy distributed, with mean . and standard deviation o..
Equation ([10)) shows the prior expectation of the intercepts is also Cauchy distributed
with mean fi. = 0 and standard deviation s, —;. Equation shows that the prior
deviation of the intercept is 0, HalfCauchy distributed with scale parameter s,, = 1.

(e}, ~HalfCauchy (v) (12)

y~HalfCauchy (0, s.,) (13)

Finally, the variance of yi, Yk, is HalfCauchy distributed. Equation shows that
the prior deviation of 7, is v which is half HalfCauchy distributed with scale s, . In this
paper, s, = 1. As recommended by Gelman et al. [24], Cauchy distributions are used.
Their heavy tails bring a robustness against outliers to the model, as well as efficiency
during the inference and sampling process. A graphical model depicting the hierarchical
structure can be seen in Figure [4].
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Figure 4. A graphical model representing the hierarchical model with partial pooling.

RESULTS

The hierarchical and independent models will now be compared. For Tools 1-5, every
measurement is given to the models for training. However, for Tools 6 and 7, the training
set is restricted to only the first 5 roughness measurements. This emulates a scenario in
which Tools 1-5 are no longer in use, and have completed the full tool life cycle, while
Tools 6 and 7 are new tools with limited measurements. What one would expect to
see 1s the independent model making accurate predictions for Tools 1-5, where there is
sufficient data for the model to learn; but for Tools 6 and 7, the independent model is
expected to struggle. Since this model is computing independent regressions for each
tool, for tools with a smaller number of measurements, the model will be uncertain in
its predictions due to the lack of data. In contrast, the hierarchical model will be able to
use what it has learnt from the previous tools to reduce uncertainty in predictions. An
additional benefit for the hierarchical model is the in-built robustness, because the model
has seen Tools 1-5 before and remembers this data via updates to the global distributions
of the gradient and slope, it is resistant to new, unrepresentative, data. Another way to
visualise this is that outliers are more diluted since the previous observations count as
extra data for this new tool.

The predictions of the independent model when trained on the roughness measure-
ments can be seen in Figure [5] The red crosses are the data the model has been trained
on, while the red circles are the measurements the model cannot see, the green line is
the predicted mean and the grey area is two standard deviations from the mean. Under
data-rich conditions, Tools 1-5, the independent model fits well to the data. The model
seems to fit a good estimate of the mean roughness but the standard deviations are large
in some instances. For example, for Tool 4 it can be seen that two of the data points are
far from the mean and cause large uncertainty in the model. Large uncertainties could
cause problems in industry. For example, a simple tool condition-monitoring system
may have some acceptable surface roughness, and when the roughness measurements
surpass this value the tool must be replaced. In this scenario having uncertainties this
large could cause false triggers of tool replacements; this will waste time and money for



manufacturers.
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Figure 5. The output from the independent model. The y-axes of all figures in this paper
have been limited between 0-1.4 um for ease of comparison.
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Figure 6. The output from the hierarchical model.



For Tools 6 and 7, with so few data points, the standard deviation of the independent
model suffers. The model has over-estimates the variance from to the available data and
does a poor job of predicting the hidden measurements. There is such large levels of
uncertainty that the mean predictions are effectively meaningless.

Compare this situation to the hierarchical model which can be seen in Figure[6] again,
for Tools 1-5 the model fits the data well and the predicted means look sensible. Where
the models differ is in the standard deviations. The hierarchical model is much more
confident in its predictions, as can be seen by the smaller grey area. This model is less
likely to trigger an unnecessary replacement of the tool, increasing the efficiency and
cost effectiveness of the manufacturing process.

Where the differences between the models is highlighted best in the data poor sce-
narios, Tool 6-7. As expected, the hierarchical model performs much better. The mean
predictions do a good job of predicting the hidden measurements and the uncertainty
in these predictions is much smaller. The hierarchical model can draw on the statisti-
cal strength of the measurements from other tools which means that it is less prone to
over-estimating the variance in the data-sparse setting.

CONCLUSION

In this paper a Bayesian hierarchical model was used to predict workpiece surface rough-
ness as a function of sliding distance. A clear benefit to the model was shown by com-
parisons to a set of independent linear regressions. The improved predictions and un-
certainty quantification is useful when making predictions for a new tool without a rich
history of data. The use of Bayesian hierarchical models can help improve decision-
making processes and reduce costs involved in machining. Looking forward, the hierar-
chical model will be used to compute risk in an active learning framework and inform a
decision making process for inspecting the machining tool.
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