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ABSTRACT

Partly missing and anomalous of the data collected from structural health
monitoring (SHM) systems are inevitable due to the failure of sensor and data
acquisition equipment, which lead to misjudgment of the target structure state. The data
integrity demands for guaranty using reconstruction algorithms before signal processing.
Recurrent neural networks (RNN) has been proved effective of reconstruction issue by
learning from the historical and future signal segments. The gated RNN represented by
long short-term memory (LSTM) networks and reservoir computing represented by
echo state networks (ESNs) show superiority on accuracy or training efficiency than
standard RNN method. In addition, bidirectional concept can be introduced into these
two methods to further improve their reconstruction precision. In this paper, models
built by bidirectional LSTM and ESN are used to reconstruct strain data measured by
the SHM system of Tsing Kau bridge, during which performances in both time and
frequency domains are compared and evaluated. Furthermore, hyperparameters
including number of layers, number of hidden units, scale of reservoir, and leaky rate
have been optimized to improve the structures of the proposed models.

INTRODUCTION

As the modern structural forms and functions becomes more complex, but thanks to
the maturity of non-destructive testing technology, the structural health monitoring
(SHM) technology that acquires real-time status information of the target structure and
diagnoses its damage by installing sensors on it is booming [1, 2]. Considering the
economic cost and the difficulties of data transmission and storage, the types, quantities
and distributions of sensors in each SHM system are strictly designed. System operators
can only perform status assessment, damage location, and accident warning based on
the signals sent back by sensors if the signals are complete and accurate. However, the
service duration of the SHM system is always the entire life cycle of the target structure,
and during this period, the occasional sudden abnormalities of the sensors are
unavoidable, which will cause the data corresponding to the signal channel to be missing
or unreliable.

For continuous structures, there are always potential correlations between the
response signals collected by sensors at various locations. These correlations come from
the similarity of the loads on adjacent positions at the same time, and also from the fact
that the vibration of the structure can often be decomposed into a linear combination of
a few fixed modes. Additionally, even for missing channels, the data before and after
the missing segment are good raw materials for us to infer the missing segment. This
family of methods for recovering missing segments from the remaining signal data is
called signal reconstruction algorithms.

Some traditional signal reconstruction algorithms focus on the statistical parameters
of the signals [3, 4]. But today, the accuracies of these algorithms are completely lower
than those of various machine learning-based algorithms, especially the neural network
models.Owing to the existence of the additional delay loop, the recurrent neural network
(RNN) has become a type of deep learning model which is aimed at processing time-
series data. The amount and quality of the historical information determine the memory
ability of the RNN model. To improve the memory capacity of RNN models, several
“gates” are added to control and select the information that flow through each neuron.



Among these gated RNNSs, the long-short term memory (LSTM) [5, 6] network has the
best performance and the widest range of applications. But the sophisticated gating
system also makes LSTM more difficult to train than standard RNN, which inherently
has difficulty of training because of its recursive structure. In contrast, some researchers
have also proposed a more lightweight RNN model, called the echo state network (ESN)
[7, 8], which has a simple structure and is easy to train, and is therefore very suitable for
online tasks. ESN replaces the hidden layer of RNN with a reservoir with predefined
parameters, and finally simplifies the training process of RNN into a linear regression
problem.

In the previous research of the authors, an LSTM model introducing Bayesian
optimization has been proposed to generate railway track slab vibrations, while a
modified ESN model with bidirectional conception has put forward used to reconstruct
the acceleration data of super high-rise buildings. However, as typical representatives
of reconstruction algorithms, the performance of ESN and LSTM models and the choice
of algorithms for specific problems are not conclusive. In this paper, various
performances of ESN and LSTM models on reconstruction problems will be compared,
including training efficiency, inference speed, accuracies in both time and frequency
domains, etc. At the same time, the improvement brought by the bidirectional concept
to the two types of algorithms will also be quantitatively studied. This study uses the
field measuring data of the Tsing Kau Bridge (TKB) in Hong Kong as a verification.

METHODOLOGY

In this section, both LSTM and ESN are introduced. As a kind of RNNs respectively,
both of them share some basic structure and notations. It is assumed that the input
signals being X € RT*Vi, where T is the number of time steps and N; is the number of
input channels. So that, the value of signal in channel i at time step ¢t can be denoted as
X;(t). The state signals stored in the hidden layer is R € RT+V*Nr where N, is the
number of neurons in the hidden layer and R(0) is the random set initial value of the
state signals. The output of the network which is called ¥ € R"*No is generate by a
certain type of connection between R. Here, N, is the number of output channels. In the
training process of these two models, the lost function can be expressed as,
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where Y; is the reconstructed signal of the channel i, n is the regularization parameter,
W is the weight matrixes illustrated below, and ||-||, stands for the second normal form.

LSTM and Bi-LSTM

For the standard RNNs, when calculating R(t), both R(t — 1) which is the
representative of historical information and X(t) which provides present excitation are
completely considered. However, in LSTM, a changing vector of equal length (called
internal state) is added into the transfer process along time dimension to control the
memory of the network, that is, € € RT+D*Nr_Thus, the R(t) can be calculated by,

R(t) = O(t)Otanh(C(t)), (2)
where 0 € RT*"r is the output gate and ® is the Hadamard product operation. The
mentioned R? is obtained as,



0(t) = o(W°X() + W;°R(t — 1) + b)), (3)
where o(+) is the sigmoid function. On the other hand, C(t) can be seen as the
combination of the partially forgotten historical information and the selected current
input information, as,

C(t) =F(t)OC(t—1) + l(t)@tanh(Win’cX(t) +WIR(t— 1)+ b§), (4
where F, I € RT*Nr are forgetting gate and input gate. They are determined by,

F(t) = oW X(t) + WIR(t — 1) + b)), (5)
I(t) = o(W™X () + W'R(t — 1) + bY) (6)

And finally, the output can be calculated as given by,
Y(t) = s(W[™R(t) + by) (7)

Weight matrixes W, wine wi/ wini e RV wro Wi, wil whi e
RN->Nr Wt € RN~>No p? b, b’;, b: € RYr, and b, € RMo are the parameters to
be trained.

It is clear that the three gates control the updating process of the state and internal

state signals by selecting the input and forgetting part of the history. The structure of the
LSTM is also shown in Figure 1(a).
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Figure 1. The structures of LSTM and Bi-LSTM

Some researchers claim that the future information can be valuable for the network
to precisely determine the state signals. By reversing the input signals, another
information flow will be generated to form the bidirectional LSTM (Bi-LSTM). In this
improved network (see Figure 1(b)), the Equation (6) will be changed into,

Y() = o(WFRp(t) + W R, (t) + by) (8)
ESN and Bi-ESN

In ESN, a large, nonlinear, and sparsely connected reservoir is used to replace the
hidden layer. The input signals will be transformed into a higher dimension space by
the reservoir. Due to the sparsity of the reservoir, the shapes of the state signals are
always simplex, that they will be employed as a group of basis signals to generate
complex signals. If the scale of the reservoir is large enough, it will be possible to fit the
output signals Y (t) by linear combination of the R(t), while R(t) generating weight
matrixes can be fixed without training, that is,

R(t) = (1 — a)R(t — 1) + atanh(WEX(t) + B, WER(t — 1) + Bpb%), (9)



where « is the leaky rate which can be used to improve the memory capacity of the ESN
models, S, and 5, are the hyperparameters being responsible for controlling the ratio
of input and history, and Wi, W% ~N{[0,1] are the preset mapping matrixes.

To further improve the memory ability of ESN, a series of delay signals of input,
and state signals are added to the output layer, that is,

Y(O) = o (WX (0); ...; X(t — t,); R(t); ..; R(t — t)] + bg),  (10)
where Wt € RENi+trNr)XNo and b € RNeare the only parameters to be trained, ¢;
and t,- are the delay time steps of the input and state signals, and [; -] stands for the
vector concatenation operation. The training process will be only conducted in the
output layer, and it is a simple linear regression problem which can be solved by
standard gradient decent algorithm.

Similarly, the bidirectional concept can be also introduced into ESN models, as
given by Equation (10). The structures of ESN and Bi-ESN are shown in Figure 2.
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Figure 2. The structures of ESN and Bi-ESN
DATASET SELECTION AND PREPROCESS

A dataset collected from the SHM system of TKB in Hong Kong is sued to verify
the proposed methods and compare their performance. The SHM system consists of 42
strain gauges and 107 other types of sensors. Ten channels contain strain data are
selected to build the dataset. The locations of these measuring points are shown in
Figure 3. The ten sensors locate in two cross beams of the bridge, one is near the main
tower, and another is at the midspan of the third span. Each cross beam has five
measuring points, corresponding to three sections which are beneath the lanes. In one
cross beam, the left and right sections possess two strain gauges on the top and bottom
flanges respectively, while only one strain gauge is installed on the middle section. The
sampling rate of the strain gauges is 51.2 Hz, and the length of the signal is therefore
determined as 10240 (200 s). The dataset can be denoted as § € R10240%10,

The dataset is normalized for convenience of training. The normalization process is
expressed in Equation (11), and the ten normalized signals have the same mean value
(0) and standard deviation (1).

Sinorm = (i —E[SiD/v V[S;], (12)



where E[-] stands for determine the mean value and V[-] stands for determine the
variance.
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Figure 3. The strain monitoring system of TKB

Table 1. The condition setting for the reconstruction task

Condition group Condition label Missing channel Known channel
Single channel missing Rsig1~Rsig0 S; S;,(#10)
Rsec $1,8; S3~S10
Double channel Rsec,2 S4,Ss $1~S83,56~S10
missing Rgec 3 S¢, S7 §1~85,58~S10
Rseca S9,510 S1~Sg
Rbeam,l $1~S85 S6~S10

Multi-channel missing
Rbeam,z S6~S10 S1~Ss

In the reconstruction tasks, part of the channels in S is assumed lost, three groups of
conditions are taken into consideration in this paper. The condition settings are
summarized in Table 1.

RESULTS AND DISCUSSIONS

In this section, the results of two-dimensional comparison analysis are shown, one
is the comparison between the two types of models, and another is between models
inducing the bidirectional structure or not. The results are obtained by feeding the
dataset described in Section 3 into the models (LSTMs and ESNs) introduced in Section
2. The ratio of the length of training set to that of testing set is 0.5, and in order to fairly
compare their performance, both LSTM and ESN models experience a 200-epoch
training with the same learning rate of 0.0002 and the same n of 0.001. The
reconstruction accuracy will be evaluated by the mean square error (MSE).

Comparison analysis of standard LSTM and ESN

In the group of single channel missing, each channel is reconstructed by the model
with signals of other nine channels as input. Figure 4(a) and 4(b) shows the
reconstructing results of the conditions with the highest and the lowest accuracy. The
reconstruction MSE for other channels are listed in Table 2. The reconstructing accuracy
order of these ten conditions are the same regardless of the LSTM or ESN model being
used. The reason for this phenomenon might be that the signal similarity between So
and other channels is high, especially being similar to 4, (on the same section), while
the shape of S5 is quite different from others, because there are no adjacent sensors



nearby. However, although the apparent similarity between the channels is divergent,
the intrinsic correlations between the responses of the strain gauges on the same bridge
under the same external excitation always exists objectively. This will lead to possibility
of reconstructing part of them by the others if the used reconstructing model can learn
the potential relationships. From the results, both the ESN and LSTM models have
completed this task, and the reconstruction MSE of each condition fluctuates between
0.0201~0.1508 and 0.0252~0.1342 respectively, in other words, for all channels, both
LSTM and ESN models have qualified reconstruction capabilities.

In details, it is clear that, in most of conditions within this group, ESN and LSTM
show almost the same learning performance, but in majority, the MSEs of ESN are
slightly lower. In these conditions where the ESN performance is better, the signal to be
reconstructed has obvious fluctuation characteristics, which is specifically manifested
in the signal with fewer high-frequency components and more low-frequency
components. Taking the TKB's natural frequency into consideration, these channels can
be generalized as signals with a large signal-to-noise ratio (SNR). In contrast, when
reconstructing the signals with lower SNR, the simple “fitting” structure of ESN is not
acting as well as before. This is perhaps caused by the interference of the noise.
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Figure 4. The reconstruction results of the first group of conditions via LSTM and ESN
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Table 2. The reconstruction MSE for the conditions in the group of single channel missing

Condition Reconstruction MSE Condition Reconstruction MSE
label ESN LSTM label ESN LSTM
Rsig,l 0.0405 0.0701 Rsig,6 0.0834 0.0589
Rsig,z 0.0410 0.0699 Rsig,7 0.0412 0.0561
Rsig,3 0.1508 0.1342 Rsig,g 0.1220 0.1081
Rsiga 0.0424 0.0498 Rsigo 0.0201 0.0252
Rsig s 0.0396 0.0365 Rsig 10 0.0347 0.0456

Similarly, we also selected the channels with the best and worst reconstruction
effects in the second group of working conditions and showed them in Figure 5. For
each reconstruction segment in Figure 5, there is no supplementary information from
the same section, resulting in that the reconstruction MSE for each channel in this group
of conditions is higher than that in the first group. In addition, from the results of this
group, the performance of ESN began to surpass LSTM in an all-round way. The
average reconstruction MSE for ESN is around 0.04, while that for LSTM reaches about
0.09. The author speculates that the reason for this result might be that no matter how
many input channels there are, the “raw material” involved in constructing the output
signals in the ESN network is always the basis consisting of all simple basic signals in



the high-dimensional space. Therefore, this very large reservoir makes the impact from
the reduction of input channels on ESN reduced to a very low level. This inference is
further confirmed by the results of the third group of working conditions. The
reconstruction MSEs for the channels on Section L and Section R are not much lower
than those of the second group. There is also just a negligible rise of the error happened
in reconstruction channel in Section M. All the facts mentioned above confirmed that
the ESN model has better performance in the reconstruction problem facing the
synchronized missing of several channels.
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Figure 5. The reconstruction results of the second group of conditions via LSTM and ESN

All work described in this paper is performed on an NVIDIA GeForce RTX3060.
The training of the single-channel ESN reconstruction model on this device takes about
240 s (200 epochs). Since the ESN model is trained for an optimal W§*, the workload
is proportional to the number of output channels, that is, the time cost for double-channel
model is 470 s, and that for five-channel model is about 15 min. But the above results
are all based on N,.; = 4000, which is manually selected for this specific task.
According to its principle, the complexity of the training process of ESN model is
O(N,s>). For the LSTM model. The training of the output layer is only a part of the
training process, and the number of neurons in the hidden layer of the LSTM does not
have to be as large as that of the ESN model. Therefore, the training time of the LSTM
model hardly changes with the number of output channels, and has always fluctuated
from 15 to 17 min.

Improvement of introducing bidirectional concept

The bidirectional concept is a method which can improve the performance of the
model processing time series by introducing future information into the state signals.

After the model is modified according to the bidirectional structure, the
reconstruction performance of both ESN and LSTM is improved. For the first group of
conditions, the highest MSE is reduced from 0.1342 to 0.1091 for LSTM and 0.1508 to
0.1207 for ESN, while the lowest MSE is reduced by about 0.005 for both LSTM and
ESN models. In addition, for both models, adopting a bidirectional structure will also
double the computational cost (both training process and testing process). In order to
further study the performance of the two reconstruction algorithms, we also performed
Fourier transform on the response signals.

Obviously, when the time domain reconstruction results are basically accurate, the
results of both the ESN and LSTM models can also achieve the same frequency



spectrum as the original signal in the frequency domain. After the introduction of the
bidirectional concept, the reconstruction accuracy of ESN and LSTM will be further
improved in both time and frequency domains. The frequency domain characteristics of
vibration signals are often important indicators for structural state assessment and
damage detection. The superiority of the proposed algorithms in frequency domain
reconstruction makes the signal reconstructed by the algorithm not only complete the
dataset, but also It can also provide significant assistance to the realization of the
ultimate goal of SHM.

CONCLUSIONS

In this paper, ESN and LSTM are adopted as representatives of RNNSs to reconstruct
missing signal segments of SHM systems. According to the results based on a dataset
collected from Hong Kong TKB SHM system, the conclusions can be drawn as below.

(1) The ESN model is sensitive enough to the change mode of the vibration signals,
and its reconstruction accuracy will increase with the similarity of the input and
output channels. But it will also be confused by noise, at this time, LSTM can
better find the true value of the missing signals.

(2) As the number of missing channels increases, the reconstruction accuracy of
LSTM will be greatly reduced because it is difficult to learn the internal
relationship between signals, but the sufficient basic signals stored in the
reservoir in ESN can basically help it maintaining the original accuracy.

(3) The LSTM and ESN models have acceptable frequency domain reconstruction
performance, which will be further improved with the introduction of the
bidirectional structure. High level of frequency reconstruction accuracy will
provide a basis for the signals reconstructed by the models to be used in complex
problems such as structural damage detection and state assessment.
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