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ABSTRACT 

 

Partly missing and anomalous of the data collected from structural health 

monitoring (SHM) systems are inevitable due to the failure of sensor and data 

acquisition equipment, which lead to misjudgment of the target structure state. The data 

integrity demands for guaranty using reconstruction algorithms before signal processing. 

Recurrent neural networks (RNN) has been proved effective of reconstruction issue by 

learning from the historical and future signal segments. The gated RNN represented by 

long short-term memory (LSTM) networks and reservoir computing represented by 

echo state networks (ESNs) show superiority on accuracy or training efficiency than 

standard RNN method. In addition, bidirectional concept can be introduced into these 

two methods to further improve their reconstruction precision. In this paper, models 

built by bidirectional LSTM and ESN are used to reconstruct strain data measured by 

the SHM system of Tsing Kau bridge, during which performances in both time and 

frequency domains are compared and evaluated. Furthermore, hyperparameters 

including number of layers, number of hidden units, scale of reservoir, and leaky rate 

have been optimized to improve the structures of the proposed models. 

 

INTRODUCTION 

 

As the modern structural forms and functions becomes more complex, but thanks to 

the maturity of non-destructive testing technology, the structural health monitoring 

(SHM) technology that acquires real-time status information of the target structure and 

diagnoses its damage by installing sensors on it is booming [1, 2]. Considering the 

economic cost and the difficulties of data transmission and storage, the types, quantities 

and distributions of sensors in each SHM system are strictly designed. System operators 

can only perform status assessment, damage location, and accident warning based on 

the signals sent back by sensors if the signals are complete and accurate. However, the 

service duration of the SHM system is always the entire life cycle of the target structure, 

and during this period, the occasional sudden abnormalities of the sensors are 

unavoidable, which will cause the data corresponding to the signal channel to be missing 

or unreliable. 

For continuous structures, there are always potential correlations between the 

response signals collected by sensors at various locations. These correlations come from 

the similarity of the loads on adjacent positions at the same time, and also from the fact 

that the vibration of the structure can often be decomposed into a linear combination of 

a few fixed modes. Additionally, even for missing channels, the data before and after 

the missing segment are good raw materials for us to infer the missing segment. This 

family of methods for recovering missing segments from the remaining signal data is 

called signal reconstruction algorithms. 

Some traditional signal reconstruction algorithms focus on the statistical parameters 

of the signals [3, 4]. But today, the accuracies of these algorithms are completely lower 

than those of various machine learning-based algorithms, especially the neural network 

models.Owing to the existence of the additional delay loop, the recurrent neural network 

(RNN) has become a type of deep learning model which is aimed at processing time-

series data. The amount and quality of the historical information determine the memory 

ability of the RNN model. To improve the memory capacity of RNN models, several 

“gates” are added to control and select the information that flow through each neuron. 



 

 

Among these gated RNNs, the long-short term memory (LSTM) [5, 6] network has the 

best performance and the widest range of applications. But the sophisticated gating 

system also makes LSTM more difficult to train than standard RNN, which inherently 

has difficulty of training because of its recursive structure. In contrast, some researchers 

have also proposed a more lightweight RNN model, called the echo state network (ESN) 

[7, 8], which has a simple structure and is easy to train, and is therefore very suitable for 

online tasks. ESN replaces the hidden layer of RNN with a reservoir with predefined 

parameters, and finally simplifies the training process of RNN into a linear regression 

problem. 

In the previous research of the authors, an LSTM model introducing Bayesian 

optimization has been proposed to generate railway track slab vibrations, while a 

modified ESN model with bidirectional conception has put forward used to reconstruct 

the acceleration data of super high-rise buildings. However, as typical representatives 

of reconstruction algorithms, the performance of ESN and LSTM models and the choice 

of algorithms for specific problems are not conclusive. In this paper, various 

performances of ESN and LSTM models on reconstruction problems will be compared, 

including training efficiency, inference speed, accuracies in both time and frequency 

domains, etc. At the same time, the improvement brought by the bidirectional concept 

to the two types of algorithms will also be quantitatively studied. This study uses the 

field measuring data of the Tsing Kau Bridge (TKB) in Hong Kong as a verification. 

 

METHODOLOGY 

 

In this section, both LSTM and ESN are introduced. As a kind of RNNs respectively, 

both of them share some basic structure and notations. It is assumed that the input 

signals being 𝑿 ∈ ℝ𝑇×𝑁𝑖, where 𝑇 is the number of time steps and 𝑁𝑖 is the number of 

input channels. So that, the value of signal in channel 𝑖 at time step 𝑡 can be denoted as 

𝑋𝑖(𝑡). The state signals stored in the hidden layer is 𝑹 ∈ ℝ(𝑇+1)×𝑁𝑟, where 𝑁𝑟 is the 

number of neurons in the hidden layer and 𝑹(0) is the random set initial value of the 

state signals. The output of the network which is called 𝒀 ∈ ℝ𝑇×𝑁𝑜 is generate by a 

certain type of connection between 𝑹. Here, 𝑁𝑜 is the number of output channels. In the 

training process of these two models, the lost function can be expressed as, 

𝐿(𝒀𝒊, 𝒀̂𝒊) =
1

𝑇
∑ (𝑌𝑖(𝑡) − 𝑌̂𝑖(𝑡))

2𝑇

𝑡=1
+ 𝜂‖𝑾𝒊‖2, (1) 

where 𝒀̂𝒊 is the reconstructed signal of the channel 𝑖, 𝜂 is the regularization parameter, 

𝑾 is the weight matrixes illustrated below, and ‖∙‖2 stands for the second normal form. 

 

LSTM and Bi-LSTM 

 

For the standard RNNs, when calculating 𝑹(𝑡) , both 𝑹(𝑡 − 1)  which is the 

representative of historical information and 𝑿(𝑡) which provides present excitation are 

completely considered. However, in LSTM, a changing vector of equal length (called 

internal state) is added into the transfer process along time dimension to control the 

memory of the network, that is, 𝑪 ∈ ℝ(𝑇+1)×𝑁𝑟. Thus, the 𝑹(𝑡) can be calculated by, 

𝑹(𝑡) = 𝑶(𝑡)⨀tanh(𝑪(𝑡)), (2) 

where 𝑶 ∈ ℝ𝑇×𝑁𝑟  is the output gate and ⨀ is the Hadamard product operation. The 

mentioned 𝑹𝒐 is obtained as, 



 

 

𝑶(𝑡) = 𝜎(𝑾𝑳
𝒊𝒏,𝒐𝑿(𝑡) + 𝑾𝑳

𝒓,𝒐𝑹(𝑡 − 1) + 𝒃𝑳
𝒐), (3) 

where 𝜎(∙)  is the sigmoid function. On the other hand, 𝑪(𝑡)  can be seen as the 

combination of the partially forgotten historical information and the selected current 

input information, as, 

𝑪(𝑡) = 𝑭(𝑡)⨀𝐂(t − 1) + 𝐈(t)⨀tanh(𝑾𝑳
𝒊𝒏,𝒄𝑿(𝑡) + 𝑾𝑳

𝒓,𝒄𝑹(𝑡 − 1) + 𝒃𝑳
𝒄), (4) 

where 𝑭, 𝑰 ∈ ℝ𝑇×𝑁𝑟 are forgetting gate and input gate. They are determined by, 

𝑭(𝑡) = 𝜎(𝑾𝑳
𝒊𝒏,𝒇

𝑿(𝑡) + 𝑾𝑳
𝒓,𝒇

𝑹(𝑡 − 1) + 𝒃𝑳
𝒇
), (5) 

𝑰(𝑡) = 𝜎(𝑾𝑳
𝒊𝒏,𝒊𝑿(𝑡) + 𝑾𝑳

𝒓,𝒊𝑹(𝑡 − 1) + 𝒃𝑳
𝒊 ) (6) 

And finally, the output can be calculated as given by, 

𝒀(𝑡) = 𝜎(𝑾𝑳
𝒐𝒖𝒕𝑹(𝑡) + 𝒃𝑳) (7) 

Weight matrixes 𝑾𝑳
𝒊𝒏,𝒐, 𝑾𝑳

𝒊𝒏,𝒄, 𝑾𝑳
𝒊𝒏,𝒇

, 𝑾𝑳
𝒊𝒏,𝒊 ∈ ℝ𝑁𝑖×𝑁𝑟 , 𝑾𝑳

𝒓,𝒐, 𝑾𝑳
𝒓,𝒄, 𝑾𝑳

𝒓,𝒇
, 𝑾𝑳

𝒓,𝒊 ∈

ℝ𝑁𝑟×𝑁𝑟 , 𝑾𝑳
𝒐𝒖𝒕 ∈ ℝ𝑁𝑟×𝑁𝑜 , 𝒃𝑳

𝒐, 𝒃𝑳
𝒄 , 𝒃𝑳

𝒇
, 𝒃𝑳

𝒊 ∈ ℝ𝑁𝑟 , and 𝒃𝑳 ∈ ℝ𝑁𝑜  are the parameters to 

be trained. 

It is clear that the three gates control the updating process of the state and internal 

state signals by selecting the input and forgetting part of the history. The structure of the 

LSTM is also shown in Figure 1(a). 

 

   
Figure 1. The structures of LSTM and Bi-LSTM 

 

Some researchers claim that the future information can be valuable for the network 

to precisely determine the state signals. By reversing the input signals, another 

information flow will be generated to form the bidirectional LSTM (Bi-LSTM). In this 

improved network (see Figure 1(b)), the Equation (6) will be changed into, 

𝒀(𝑡) = 𝜎(𝑾𝑳,𝒇
𝒐𝒖𝒕𝑹𝒇(𝑡) + 𝑾𝑳,𝒃

𝒐𝒖𝒕𝑹𝒃(𝑡) + 𝒃𝑳) (8) 

 

ESN and Bi-ESN 

 

In ESN, a large, nonlinear, and sparsely connected reservoir is used to replace the 

hidden layer. The input signals will be transformed into a higher dimension space by 

the reservoir. Due to the sparsity of the reservoir, the shapes of the state signals are 

always simplex, that they will be employed as a group of basis signals to generate 

complex signals. If the scale of the reservoir is large enough, it will be possible to fit the 

output signals 𝒀(𝑡) by linear combination of the 𝑹(𝑡), while 𝑹(𝑡) generating weight 

matrixes can be fixed without training, that is, 

𝑹(𝑡) = (1 − 𝛼)𝑹(𝑡 − 1) + 𝛼tanh(𝑾𝑬
𝒊𝒏𝑿(𝑡) + 𝛽𝑤𝑾𝑬

𝒓 𝑹(𝑡 − 1) + 𝛽𝑏𝒃𝑬
𝒓 ), (9) 



 

 

where 𝛼 is the leaky rate which can be used to improve the memory capacity of the ESN 

models, 𝛽𝑤 and 𝛽𝑏 are the hyperparameters being responsible for controlling the ratio 

of input and history, and 𝑾𝑬
𝒊𝒏, 𝑾𝑬

𝒓 ~𝑁[0,1] are the preset mapping matrixes. 

To further improve the memory ability of ESN, a series of delay signals of input, 

and state signals are added to the output layer, that is, 

𝒀(𝑡) = 𝜎(𝑾𝑬
𝒐𝒖𝒕[𝑿(𝑡); … ; 𝑿(𝑡 − 𝑡𝑖); 𝑹(𝑡); … ; 𝑹(𝑡 − 𝑡𝑟)] + 𝒃𝑬), (10) 

where 𝑾𝑬
𝒐𝒖𝒕 ∈ ℝ(𝑡𝑖𝑁𝑖+𝑡𝑟𝑁𝑟)×𝑁𝑜 and 𝒃𝑬 ∈ ℝ𝑁𝑜are the only parameters to be trained, 𝑡𝑖 

and 𝑡𝑟 are the delay time steps of the input and state signals, and [∙; ∙] stands for the 

vector concatenation operation. The training process will be only conducted in the 

output layer, and it is a simple linear regression problem which can be solved by 

standard gradient decent algorithm. 

Similarly, the bidirectional concept can be also introduced into ESN models, as 

given by Equation (10). The structures of ESN and Bi-ESN are shown in Figure 2. 

𝒀(𝑡) = 𝜎 (
𝑾𝑬,𝒇

𝒐𝒖𝒕[𝑿(𝑡); … ; 𝑿(𝑡 − 𝑡𝑖); 𝑹𝒇(𝑡); … ; 𝑹𝒇(𝑡 − 𝑡𝑟)] +

𝑾𝑬,𝒃
𝒐𝒖𝒕[𝑹𝒃(𝑡); … ; 𝑹𝒃(𝑡 − 𝑡𝑟)] + 𝒃𝑬

) (11) 

 

   
Figure 2. The structures of ESN and Bi-ESN 

 

DATASET SELECTION AND PREPROCESS 

 

A dataset collected from the SHM system of TKB in Hong Kong is sued to verify 

the proposed methods and compare their performance. The SHM system consists of 42 

strain gauges and 107 other types of sensors. Ten channels contain strain data are 

selected to build the dataset. The locations of these measuring points are shown in 

Figure 3. The ten sensors locate in two cross beams of the bridge, one is near the main 

tower, and another is at the midspan of the third span. Each cross beam has five 

measuring points, corresponding to three sections which are beneath the lanes. In one 

cross beam, the left and right sections possess two strain gauges on the top and bottom 

flanges respectively, while only one strain gauge is installed on the middle section. The 

sampling rate of the strain gauges is 51.2 Hz, and the length of the signal is therefore 

determined as 10240 (200 s). The dataset can be denoted as 𝑺 ∈ ℝ10240×10.  

The dataset is normalized for convenience of training. The normalization process is 

expressed in Equation (11), and the ten normalized signals have the same mean value 

(0) and standard deviation (1). 

𝑺𝒊,𝒏𝒐𝒓𝒎 = (𝑺𝒊 − 𝐸[𝑺𝒊])/√𝑉[𝑺𝒊], (12) 



 

 

where 𝐸[∙]  stands for determine the mean value and 𝑉[∙]  stands for determine the 

variance. 

 

 
Figure 3. The strain monitoring system of TKB 

 
Table 1. The condition setting for the reconstruction task 

Condition group Condition label Missing channel Known channel 

Single channel missing 𝑅𝑠𝑖𝑔,1~𝑅𝑠𝑖𝑔,10 𝑺𝒊 𝑺𝒋, (𝑗 ≠ 𝑖) 

Double channel 

missing 

𝑅𝑠𝑒𝑐,1 𝑺𝟏, 𝑺𝟐 𝑺𝟑~𝑺𝟏𝟎 

𝑅𝑠𝑒𝑐,2 𝑺𝟒, 𝑺𝟓 𝑺𝟏~𝑺𝟑, 𝑺𝟔~𝑺𝟏𝟎 

𝑅𝑠𝑒𝑐,3 𝑺𝟔, 𝑺𝟕 𝑺𝟏~𝑺𝟓, 𝑺𝟖~𝑺𝟏𝟎 

𝑅𝑠𝑒𝑐,4 𝑺𝟗, 𝑺𝟏𝟎 𝑺𝟏~𝑺𝟖 

Multi-channel missing 
𝑅𝑏𝑒𝑎𝑚,1 𝑺𝟏~𝑺𝟓 𝑺𝟔~𝑺𝟏𝟎 

𝑅𝑏𝑒𝑎𝑚,2 𝑺𝟔~𝑺𝟏𝟎 𝑺𝟏~𝑺𝟓 

 

In the reconstruction tasks, part of the channels in 𝑺 is assumed lost, three groups of 

conditions are taken into consideration in this paper. The condition settings are 

summarized in Table 1. 

 

RESULTS AND DISCUSSIONS 

 

In this section, the results of two-dimensional comparison analysis are shown, one 

is the comparison between the two types of models, and another is between models 

inducing the bidirectional structure or not. The results are obtained by feeding the 

dataset described in Section 3 into the models (LSTMs and ESNs) introduced in Section 

2. The ratio of the length of training set to that of testing set is 0.5, and in order to fairly 

compare their performance, both LSTM and ESN models experience a 200-epoch 

training with the same learning rate of 0.0002 and the same 𝜂  of 0.001. The 

reconstruction accuracy will be evaluated by the mean square error (MSE). 

 

Comparison analysis of standard LSTM and ESN 

 

In the group of single channel missing, each channel is reconstructed by the model 

with signals of other nine channels as input. Figure 4(a) and 4(b) shows the 

reconstructing results of the conditions with the highest and the lowest accuracy. The 

reconstruction MSE for other channels are listed in Table 2. The reconstructing accuracy 

order of these ten conditions are the same regardless of the LSTM or ESN model being 

used. The reason for this phenomenon might be that the signal similarity between 𝑺𝟗 

and other channels is high, especially being similar to 𝑺𝟏𝟎 (on the same section), while 

the shape of 𝑺𝟑 is quite different from others, because there are no adjacent sensors 



 

 

nearby. However, although the apparent similarity between the channels is divergent, 

the intrinsic correlations between the responses of the strain gauges on the same bridge 

under the same external excitation always exists objectively. This will lead to possibility 

of reconstructing part of them by the others if the used reconstructing model can learn 

the potential relationships. From the results, both the ESN and LSTM models have 

completed this task, and the reconstruction MSE of each condition fluctuates between 

0.0201~0.1508 and 0.0252~0.1342 respectively, in other words, for all channels, both 

LSTM and ESN models have qualified reconstruction capabilities. 

In details, it is clear that, in most of conditions within this group, ESN and LSTM 

show almost the same learning performance, but in majority, the MSEs of ESN are 

slightly lower. In these conditions where the ESN performance is better, the signal to be 

reconstructed has obvious fluctuation characteristics, which is specifically manifested 

in the signal with fewer high-frequency components and more low-frequency 

components. Taking the TKB's natural frequency into consideration, these channels can 

be generalized as signals with a large signal-to-noise ratio (SNR). In contrast, when 

reconstructing the signals with lower SNR, the simple “fitting” structure of ESN is not 

acting as well as before. This is perhaps caused by the interference of the noise.  

 

0 20 40 60 80 100
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

A
cc

el
er

at
io

n
 o

f 
S

9

Time (s)

 True

 ESN

 LSTM
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(b) Reconstruction result for Rsig,3  
Figure 4. The reconstruction results of the first group of conditions via LSTM and ESN 

 
Table 2. The reconstruction MSE for the conditions in the group of single channel missing 

Condition 

label 

Reconstruction MSE Condition 

label 

Reconstruction MSE 

ESN LSTM ESN LSTM 

𝑅𝑠𝑖𝑔,1 0.0405 0.0701 𝑅𝑠𝑖𝑔,6 0.0834 0.0589 

𝑅𝑠𝑖𝑔,2 0.0410 0.0699 𝑅𝑠𝑖𝑔,7 0.0412 0.0561 

𝑅𝑠𝑖𝑔,3 0.1508 0.1342 𝑅𝑠𝑖𝑔,8 0.1220 0.1081 

𝑅𝑠𝑖𝑔,4 0.0424 0.0498 𝑅𝑠𝑖𝑔,9 0.0201 0.0252 

𝑅𝑠𝑖𝑔,5 0.0396 0.0365 𝑅𝑠𝑖𝑔,10 0.0347 0.0456 

 

Similarly, we also selected the channels with the best and worst reconstruction 

effects in the second group of working conditions and showed them in Figure 5. For 

each reconstruction segment in Figure 5, there is no supplementary information from 

the same section, resulting in that the reconstruction MSE for each channel in this group 

of conditions is higher than that in the first group. In addition, from the results of this 

group, the performance of ESN began to surpass LSTM in an all-round way. The 

average reconstruction MSE for ESN is around 0.04, while that for LSTM reaches about 

0.09. The author speculates that the reason for this result might be that no matter how 

many input channels there are, the “raw material” involved in constructing the output 

signals in the ESN network is always the basis consisting of all simple basic signals in 



 

 

the high-dimensional space. Therefore, this very large reservoir makes the impact from 

the reduction of input channels on ESN reduced to a very low level. This inference is 

further confirmed by the results of the third group of working conditions. The 

reconstruction MSEs for the channels on Section L and Section R are not much lower 

than those of the second group. There is also just a negligible rise of the error happened 

in reconstruction channel in Section M. All the facts mentioned above confirmed that 

the ESN model has better performance in the reconstruction problem facing the 

synchronized missing of several channels. 
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(a) Reconstruction result for Rsec,1  
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(b) Reconstruction result for Rsec,3  
Figure 5. The reconstruction results of the second group of conditions via LSTM and ESN 

 

All work described in this paper is performed on an NVIDIA GeForce RTX3060. 

The training of the single-channel ESN reconstruction model on this device takes about 

240 s (200 epochs). Since the ESN model is trained for an optimal 𝑾𝑬
𝒐𝒖𝒕, the workload 

is proportional to the number of output channels, that is, the time cost for double-channel 

model is 470 s, and that for five-channel model is about 15 min. But the above results 

are all based on 𝑁𝑟𝑒𝑠 = 4000 , which is manually selected for this specific task. 

According to its principle, the complexity of the training process of ESN model is 

𝑂(𝑁𝑟𝑒𝑠
3). For the LSTM model. The training of the output layer is only a part of the 

training process, and the number of neurons in the hidden layer of the LSTM does not 

have to be as large as that of the ESN model. Therefore, the training time of the LSTM 

model hardly changes with the number of output channels, and has always fluctuated 

from 15 to 17 min. 

 

Improvement of introducing bidirectional concept 

 

The bidirectional concept is a method which can improve the performance of the 

model processing time series by introducing future information into the state signals.  

After the model is modified according to the bidirectional structure, the 

reconstruction performance of both ESN and LSTM is improved. For the first group of 

conditions, the highest MSE is reduced from 0.1342 to 0.1091 for LSTM and 0.1508 to 

0.1207 for ESN, while the lowest MSE is reduced by about 0.005 for both LSTM and 

ESN models. In addition, for both models, adopting a bidirectional structure will also 

double the computational cost (both training process and testing process). In order to 

further study the performance of the two reconstruction algorithms, we also performed 

Fourier transform on the response signals. 

Obviously, when the time domain reconstruction results are basically accurate, the 

results of both the ESN and LSTM models can also achieve the same frequency 



 

 

spectrum as the original signal in the frequency domain. After the introduction of the 

bidirectional concept, the reconstruction accuracy of ESN and LSTM will be further 

improved in both time and frequency domains. The frequency domain characteristics of 

vibration signals are often important indicators for structural state assessment and 

damage detection. The superiority of the proposed algorithms in frequency domain 

reconstruction makes the signal reconstructed by the algorithm not only complete the 

dataset, but also It can also provide significant assistance to the realization of the 

ultimate goal of SHM. 

 

CONCLUSIONS 

 

In this paper, ESN and LSTM are adopted as representatives of RNNs to reconstruct 

missing signal segments of SHM systems. According to the results based on a dataset 

collected from Hong Kong TKB SHM system, the conclusions can be drawn as below. 

(1) The ESN model is sensitive enough to the change mode of the vibration signals, 

and its reconstruction accuracy will increase with the similarity of the input and 

output channels. But it will also be confused by noise, at this time, LSTM can 

better find the true value of the missing signals. 

(2) As the number of missing channels increases, the reconstruction accuracy of 

LSTM will be greatly reduced because it is difficult to learn the internal 

relationship between signals, but the sufficient basic signals stored in the 

reservoir in ESN can basically help it maintaining the original accuracy. 

(3) The LSTM and ESN models have acceptable frequency domain reconstruction 

performance, which will be further improved with the introduction of the 

bidirectional structure. High level of frequency reconstruction accuracy will 

provide a basis for the signals reconstructed by the models to be used in complex 

problems such as structural damage detection and state assessment. 
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