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ABSTRACT 

Structural health monitoring (SHM) involves constantly monitoring the condition of 
structures to detect any damage or deterioration that might develop over time. Machine 
learning methods have been successfully used in SHM, however, their effectiveness is 
often limited by the availability of data for various damage cases. Such data can be 
especially hard to obtain from high-value structures. In this paper, transfer component 
analysis (TCA) with domain adaptation is utilised in conjunction with high-fidelity nu- 
merical models to generate surrogates for damage identification without the requirement 
for high volumes of data from various damaged states of the structure. The approach 
is demonstrated on a laboratory structure, a nonlinear Brake-Reuß beam, where damage 
scenarios correspond to different torque settings on a lap joint. It is shown that, in a 
three-class scenario, machine learning algorithms can be trained using numerical data 
and tested successfully on experimental data. 

 

 
INTRODUCTION 

Efficient Structural Health Monitoring (SHM) systems can improve the safety, re- 
liability and service life of structures. Additionally, they aid in lowering the cost and 
time required for maintenance procedures. There are diverse advancements in recent 
research in SHM, particularly employing machine learning (ML) algorithms. Typically, 
ML algorithms which are used in SHM can be categorised into supervised, unsupervised 
and semi-supervised. Supervised ML algorithms require data from all possible damaged 
states for successful damage identification in SHM. While it is extremely simple to dam- 
age and subsequently obtain data from inexpensive structures, damage to high-value 
structures, is nearly unattainable. 

It is a challenging task to solve this problem of data insufficiency. Experimental ap- 
proaches to use ‘damage proxies’ in the form of added masses have been shown in [1, 2], 
but they are generally limited to accessible areas of a structure. Another possible solu- 
tion is to create surrogates with the assistance of high-fidelity physical models. However, 
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damage modelling for the purposes of generating surrogate models is also challenging.
Here, a novel technique is employed with the integration of high-fidelity physical mod-
els and Transfer Component Analysis (TCA) with domain adaptation. TCA with domain
adaptation was initially introduced by Pan et al. [3], who provided a unique feature ex-
traction approach as well as an extensive understanding of the theoretical foundations
and mathematical equations of TCA with domain adaptation. Chakraborty et al. [4]
demonstrated a transfer learning strategy in SHM employing time-frequency features
on a classification problem. In one of the applications of domain adaptation in SHM,
Gardner et al. [5] provided a simple implementation with feature sets of damped natu-
ral frequencies and damping ratios in the application of population-based SHM. The re-
sults outperformed conventional supervised learning algorithms in terms of classification
rates. In another investigation, Ozdagli and Koutsoukos [6] used a domain-adversarial
neural network to achieve domain adaptation, which provided evidence for improved
prediction accuracy. Poole et al. [7] conducted domain adaptation with statistical align-
ment as the initial step and proved that the normal correlation alignment is robust to
solve the problem of class imbalance.

In this work, the core objective is to acquire data surrogates for diverse structural
damage classes, which are then used to train efficient multiple classifiers. The validation
of the classifiers is done with the use of actual damage data from laboratory experi-
ments. The structure of this article begins with an introductory section, followed by a
description of the research strategy and the techniques adopted herein. The third section
describes the test setup for the experimental work as well as the development of the nu-
merical model. The fourth section presents the three-class problem examined here and
the approach used to attain efficiency. In the last section, results of trained classifiers are
reported alongside concluding observations.

RESEARCH FRAMEWORK

Broadly speaking, common ML techniques employed in SHM depend crucially on
a feature selection/extraction stage. The higher the sensitivity of the feature, the more
precise any classifier is in categorising damage [8]. In general, one could perform a
manual or automatic feature selection (e.g. see [9] for the latter). Here, the research
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framework (shown in Figure 1) begins with a manual feature selection on a highly accu-
rate FE model. Features are primarily extracted through Frequency Response Functions
generated from the FE model, and their selection follows a similar approach to one used
in [2], while at least one feature per damage-class is extracted. The next step is to incor-
porate TCA with domain adaptation to transfer knowledge from one domain to another.
Following data segregation, the next step of the framework involves deploying multiple
classification algorithms for training on FE data and validating on experimental data-
features.

The main objective of TCA with domain adaptation is to align the marginal distribu-
tions of the source and target domains. A domain can be defined as a feature space and
a marginal probability distribution over the feature data [10]. In this article, the source
and target domains are the FE and the experimental-data, respectively - aiming at trans-
fer learning between FE and experiment. TCA translates the feature sets of the source
and target domains to a single latent feature space, given the input data for the domains
and their labels. This transformation yields two new feature sets for the source and tar-
get domains. The projection of the input feature sets is accomplished by minimising the
distance between the empirical means of the two distributions (source and target), as as-
sessed by the distance metric called maximum mean discrepancy (MMD). This distance
metric quantifies the distance in a reproducing kernel Hilbert space (RKHS), where the
RKHS depends primarily on the kernel function [3].

Let ϕ be the kernel-induced feature map, and L = {li}, M = {mi} the samples from
the two distributions. The empirical estimation of the distance between two samples is

MMD(L,M) = ||1/n1

n1∑
i=1

ϕ(li)− 1/n2

n2∑
i=1

ϕ(mi)||2H (1)

where ||.||H is the RKHS norm. Thus, from equation (1) it is evident that kernel mapping
plays a vital role in reducing the distance between P (ϕ(L)) and P (ϕ(M)). The new
feature space is identified using the MMD and a kernel trick [3]. The chosen kernel
function is utilised to assess a kernel matrix, which is then used to conduct the parametric
kernel mapping. This mapping, which is an optimisation problem, results in a new
feature dataset and the transformation matrix. The hyperparameters required for all of
these operations are the kernel function, kernel sigma, and regularisation parameter. The
selection of hyperparameters for the application of TCA in SHM can be influenced by
the type of features, the complexity of the structure, and the dimensionality of the input
dataset. Besides, kernel functions that are often utilised are linear, polynomial, and radial
basis function (RBF). A linear function is widely utilised due to its efficiency and ease
of computing.

The major benefit of the TCA is that when knowledge is transferred from one domain
to another, the physical structure of the datasets is preserved [10]. Domain adaptation
is performed after the selection of the necessary hyperparameters (kernel, kernel sigma,
latent subspace dimension, regularisation parameter). This study uniquely utilises the
output transformation matrix from the healthy class to transform the feature sets of dam-
aged classes into the new feature sets of the corresponding classes. For the purpose of
performing this transformation, a combined dataset (damage) including merged datasets
for each feature from the source (FE) and target (Exp) domains is passed through a kernel
function. The projected dataset in the new latent feature space is obtained by performing



matrix multiplication between the resulting kernel dataset and the transformation matrix
(healthy). This approach is carried out for every feature in each class on a consistent
basis to deliver datasets for all of the specified damage classes. Once the feature sets for
healthy and damaged classes are computed, the Mahalanobis distance between normal
(healthy) and abnormal classes can be calculated [11] and act as a measure of ‘abnor-
mality’ in the dataset.

Initially, a group of 800 multi-layer perceptrons (MLPs) with 20 initialisations and
hidden units ranging from 5 to 200 serves as multiple classifiers. Furthermore, mul-
tiple K-nearest neighbour (KNN) classifiers were deployed, each with its own set of
neighbour values and distance metrics. The Mahalanobis distance FE features from the
previous stage serve as input to train the deployed classifiers. Finally, the performance
of these trained classifiers on experimental data was tested.

EXPERIMENTAL SETUP AND NUMERICAL MODEL

The experimental structure chosen in this study was a Brake-Reuß beam [12] with
a lap joint secured with bolts. Two stainless steel 304 beam components were fastened
together using MS M8 bolts to produce a prismatic beam having a length of 108 cm and
a square cross-section with a side of 2.54 cm. The bolts were secured with a pretension
of 20 Nm, which is considered a baseline or healthy (normal) state throughout the article.
Loosening these bolts can thus facilitate a series of tests for various damage classes. The
experimental test apparatus is depicted in Figure 2. To approximate free-free boundary
conditions, the beam was suspended at two locations by means of fishing lines. Uniaxial
piezoelectric accelerometers of the PCB type were used to record accelerations at seven
locations on the beam (see again 2).

The data acquisition was performed with an NI DAQ and Labview (signal express)
application running on a Dell PC. A random noise generator was adopted to create the
excitation force for 20 seconds. Throughout the experiments, a sample rate of 25.6 kHz
was used. Figure 2 displays the sensor positions, and the data obtained from these lo-
cations include force and acceleration measurements throughout this article. Frequency
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Figure 2. Experimental setup with sensor locations of the Brake-Reuß beam



TABLE I. ORDER OF EXPERIMENTAL TESTS AND BOLT CONFIGURATIONS

Test Bolt configuration
Normal All bolts Torque = 20Nm

Damage class 1 All bolts Torque = 10Nm
Damage class 2 All bolts Torque = 5Nm

Figure 3. FE model Brake-Reuß beam

response functions (FRFs) were estimated using the H1 frequency response estimator
with a frequency resolution of 0.3906 Hz and a bandwidth of 0-12800 Hz. Furthermore,
experimental modal analysis was carried out on the SDTools Matlab toolbox to identify
modal parameters such as natural frequencies and mode shapes of the first 9 modes. A
series of tests were conducted via loosening bolts for two damage classes. The desig-
nated bolt configurations for these tests are illustrated in Table I.

Acquiring a high-quality baseline numerical model was critical for creating damage
surrogates for experimentally tested damage scenarios. A CAD model is assembled with
five components, including two beam components and three bolts. The current study
incorporated solid tetrahedron elements in the FE mesh. Figure 3 depicts the model
assembly of the beam. Modelling of the joint was done by representing bolt pretensions
as directional springs, as in [12]. In this case, five spring interfaces were created by
splitting lap joint faces into five divisions. This model was then updated to improve
accuracy based on experimental modal parameters. Specifically, the spring interfaces of
the modelled joint, were updated using the sensitivity model updating technique [13] by
comparing the first five bending modes. The full approach for the joint modelling and
FE model updating of the beam model can be found in [14].

THREE CLASS PROBLEM

In a three-class classification problem, the damage classes listed in Table I were taken
into account. As a result, the damage classes of bolt pretensions 10 Nm and 5 Nm were
assumed to be 50% and 25% of the baseline model, respectively. Damage can be mod-
elled in the FE model by varying the 8 parameters, which include 5 interface stiffnesses
and 3 material stiffnesses of the bolts. Two features are chosen for each damage class
through feature ranking (see [1]), which yields one peak and three troughs from sensors
2,3,4, and 7. Moreover, a feature set with 500 copies added with white Gaussian noise
was implemented to achieve feature variability (see also [1]). This process was repeated
consistently for each damage class. Subsequently, as part of the proposed framework
(see Figure 1), TCA with domain adaptation was applied. The TCA parameters are de-



Figure 4. Comparison of FE and experimental features of the three-class problem (Bolt preten-
sion: 20Nm, 10Nm, 5Nm) before TCA application.

termined by multiple factors, including the source and target domains, type of problem,
and structure. The ideal parameters for this study were determined iteratively as a linear
kernel with a sigma of length 15 and a latent subspace dimension of 25. The Maha-
lanobis distance was computed using the output features of all damage classes from the
previous stage [2, 11]. The comparison of the Mahalanobis distance features before and
after TCA is illustrated in Figures 4 and 5.

Figure 5. Comparison of FE and experimental features of the three-class problem (Bolt preten-
sion: 20Nm, 10Nm, 5Nm) after TCA application.



TABLE II. TRAINING AND TESTING RESULTS OF KNN CLASSIFIERS BEFORE
APPLICATION OF TCA

Name of KNN K Distance
metric

Training accuracy
FE Data

Testing accuracy
Experimental data

Fine 1 Euclidian 100% 50.2%
Medium 10 Euclidian 100% 48.3%
Coarse 100 Euclidian 100% 47.5%
Cosine 10 Cosine 100% 47.8%
Cubic 10 Minkowski

(cubic)
100% 46.9%

Weighted 10 Euclidian 100% 48.5%
Optimisable 2 Mahalanobis 100% 22.2%

RESULTS AND CONCLUSION

The FE feature dataset from the previous stage is split into 70% training, 15% val-
idation, and 15% testing sets. These datasets are delivered to the deployed 800 MLPs
as input for training. After training, features from the experimental dataset are supplied
into the networks for experimental validation. Prior to the application of TCA, only 2
of the 800 neural networks scored adequately with the experimental data. Following the
application, 569 out of 800 networks on experimental data worked well (with at least
90% classification accuracy). From this result, the efficiency of the fraction of networks
that function effectively on experimental data increases from 0.25% to 71%.

Furthermore, when dealing with the three-class problem, KNN classifiers perform
similarly to neural networks. The performance of the classifiers on experimental data
increased significantly from 50% (approx) to 100% with the application of the proposed
framework. Tables II and III exhibit the performance of various KNN classifiers before
and after TCA application.

The primary goal of this research was to deal with the problem of data scarcity in su-
pervised machine learning algorithms. Additionally, the aim was to generate surrogates
without relying on a large amount of experimental data. This problem is addressed here

TABLE III. TRAINING AND TESTING RESULTS OF KNN CLASSIFIERS AFTER
APPLICATION OF TCA

Name of KNN K Distance
metric

Training accuracy
FE Data

Testing accuracy
Experimental data

Fine 1 Euclidian 100% 100%
Medium 10 Euclidian 100% 100%
Coarse 100 Euclidian 100% 100%
Cosine 10 Cosine 100% 100%
Cubic 10 Minkowski

(Cubic)
100% 100%

Weighted 10 Euclidian 100% 100%
Optimisable 1 Cityblock 100% 100%



as a three-class problem (normal, damage scenario 1, damage scenario 2), where dam-
age was represented by different torque settings on the lap joint of a laboratory structure.
Overall, results reveal that the accuracy of the multiple classifiers greatly increased when
TCA with domain adaptation was implemented, while the use of experimental data from
damage cases was completely avoided in the training stage of the ML algorithms. In
the case of neural networks, the proportion of neural networks that perform well on ex-
perimental data has improved from 0.25% to 71%. KNN classifiers exhibited similar
performance by improving their performance from 50% (approx) to 100% on experi-
mental data. In the future, this technique might be used for localisation problems as well
as damage classification in more complicated structures.

REFERENCES
1. Papatheou, E., G. Manson, R. J. Barthorpe, and K. Worden. 2010. “The use of pseudo-faults

for novelty detection in SHM,” Journal of Sound and Vibration, 329(12):2349–2366.
2. Papatheou, E., G. Manson, R. J. Barthorpe, and K. Worden. 2014. “The use of pseudo-faults

for damage location in SHM: An experimental investigation on a Piper Tomahawk aircraft
wing,” Journal of Sound and Vibration, 333(3):971–990.

3. Pan, S. J., I. W. Tsang, J. T. Kwok, and Q. Yang. 2011. “Domain adaptation via transfer
component analysis,” IEEE Transactions on Neural Networks, 22(2):199–210.

4. Chakraborty, D., N. Kovvali, B. Chakraborty, A. Papandreou-Suppappola, and A. Chat-
topadhyay. 2011. “Structural damage detection with insufficient data using transfer learn-
ing techniques,” in Sensors and Smart Structures Technologies for Civil, Mechanical, and
Aerospace Systems, vol. 7981, pp. 1175–1183.

5. Gardner, P., X. Liu, and K. Worden. 2020. “On the application of domain adaptation in
structural health monitoring,” Mechanical Systems and Signal Processing, 138.

6. Ozdagli, A. I. and X. Koutsoukos. 2020. “Domain Adaptation for Structural Health Moni-
toring,” in Annual Conference of the PHM Society, PHM 2020, pp. 1–9.

7. Poole, J., P. Gardner, N. Dervilis, L. Bull, and K. Worden. 2022. “On statistic alignment for
domain adaptation in structural health monitoring,” Structural Health Monitoring, 0(0):1–
20.

8. Farrar, C. R. and K. Worden. 2012. Structural Health Monitoring: A Machine Learning
Perspective, Wiley, 1st edition edn.

9. Manson, G., E. Papatheou, and K. Worden. 2008. “Genetic optimisation of a neural network
damage diagnostic,” Aeronautical Journal, 112(1131):267–274.

10. Pan, S. J. and Q. Yang. 2010. “A survey on transfer learning,” IEEE Transactions on Knowl-
edge and Data Engineering, 22(10):1345–1359.

11. Worden, K., G. Manson, and N. R. Fieller. 2000. “Damage detection using outlier analysis,”
Journal of Sound and Vibration, 229(3):647–667.

12. Lacayo, R., L. Pesaresi, J. Groß, D. Fochler, J. Armand, L. Salles, C. Schwingshackl,
M. Allen, and M. Brake. 2019. “Nonlinear modeling of structures with bolted joints: A
comparison of two approaches based on a time-domain and frequency-domain solver,” Me-
chanical Systems and Signal Processing, 114:413–438.

13. Mottershead, J. E., M. Link, and M. I. Friswell. 2011. “The sensitivity method in finite ele-
ment model updating: A tutorial,” Mechanical Systems and Signal Processing, 25(7):2275–
2296.

14. R. S. Battu, K. Agathos, C. Smith, and E. Papatheou. 2022. “Robust training databases for
supervised learning algorithms in structural health monitoring applications,” in Conference
Proceedings of ISMA2022 - USD2022, K U Leuven, Leuven, pp. 3671–3681.




