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ABSTRACT

Over the last decade or so, cointegration has emerged as arguably the state-of-the-art
in terms of removing Environmental and Operational Variations (EOVs) from structural
health monitoring (SHM) data. When data channels share common trends which can be
removed by linear projection, the Johansen procedure, a maximum-likelihood approach
developed within the field of econometrics, is provably optimal. Unfortunately, SHM
problems can present where the trends occupy a nonlinear submanifold of the feature
space, and in this case, linear cointegration/projection fails. It is still possible to make
progress in this case by moving to the older Engle-Granger approach to cointegration,
where one linearly regresses one of the feature space variables on the others; nonlinear
cointegration is then ‘simply’ the application of an appropriate nonlinear regressor. Over
the years, a number of nonlinear regression algorithms have been applied, motivated by
machine learning or evolutionary computation; each with pros and cons. The aim of the
current paper is to demonstrate an approach based on Treed Gaussian Processes (TGP);
the advantage being that the algorithm allows switching between cointegration models in
different parts of the feature space. Examination of the switching points can provide in-
sight into the physical processes driving the nonlinearity. The approach is demonstrated
here on the well-known Z24 Bridge data set, where the ambient temperature drives EOVs
which cannot be removed by linear methods.

INTRODUCTION

The past three decades have seen considerable progress in data-based Structural
Health Monitoring (SHM) [1], notably in terms of its recent transition into industrial
usage. Along the way, a number of significant challenges have been overcome, and
significant challenges remain. One of the most significant problems has been that of
confounding influences, or Environmental and Operational Variations (EOVs) [2]. A
dominant issue in SHM has always been that of acquiring damage-state data for high-
value structures; the usual situation being that only data from the undamaged structure
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will be available. However, the lack of damage-state data has not precluded the devel-
opment of effective damage detection algorithms. Such algorithms are usually based on
the idea of novelty or change detection; in the language of machine learning they are
designated unsupervised learning algorithms. Novelty detection works by establishing
a statistical model of the normal condition of the structure in terms of feature data from
the undamaged state; the simple premise is that any subsequent test data which deviate
significantly from the model, thus signal change, from which damage is inferred. Unfor-
tunately, because such algorithms detect changes, they can be confused by any benign
changes in the environment or operation of the structure; the result can be an undesirable
false alarm. For example, if one is concerned with detecting damage by monitoring the
natural frequencies of a bridge, variations in temperature or mass loading (traffic) can
affect the frequencies as much (if not more), as damage.

The solution to the problem of confounding influences is to find a systematic means
of removing them from feature data; various effective means have been proposed over
the years, usually in terms of subtraction or projection schemes [3]. Arguably the most
effective of these schemes has proved to be cointegration. Cointegration was developed
in the econometrics literature in the context of identifying long-term trends in economic
or financial date [4]. The basic premise is that, if a number of variables share common
long-term trends, this nonstationary behaviour can be removed by forming an appro-
priate linear combination of the variables, for which the trends cancel. The implication
for SHM should be clear: if a set of feature variables share a dependence on long-term
confounding influences, a cointegrated feature vector can be formed, purged of those in-
fluences. A series of papers starting with [5,6], showed the effectiveness of cointegration
for SHM purposes. The theory in these papers was based on the Johansen procedure [7],
which is able to form a maximum-likelihood estimate of the necessary linear combina-
tions. As powerful and elegant as the Johansen procedure proves to be, its dependence
on linear combinations is a significant restriction. In essence, the procedure constructs
a linear transformation of feature data in which the transformed variables are stationary
(purged of trends). In the situation that the shared long-term trends in the feature data
are nonlinearly related, the Johansen procedure breaks down. A general solution to the
nonlinear problem is simply stated, one seeks a nonlinear transformation on the feature
variables which purges the trends. Unfortunately, exactly like the situation for modal
analysis in structural dynamics, such nonlinear transformations cannot be constructed in
general.

Despite the lack of a nonlinear Johansen procedure, all is not lost; in fact, all one
needs to do is take a step backwards to an earlier take on cointegration. The first works
on cointegration adopted a different approach — the Engle-Granger (EG) method [4].
Although the EG approach entails a number of careful steps, the essence of the method
is to linearly regress one of the variables of interest on the others; if the regression is
effective, the model residual (noise) will be purged of the long-term trends as required’.

'A great deal of care is usually needed in any cointegration strategy, apart from the actual removal
stage. For example, one would usually establish that the variables of interest are all integrated to the same
order; one would also carry out stationarity tests on each variable [4]. These stages are omitted in the
discussion in this paper because they have already been considered in the literature of the case study here
— the Z24 Bridge. In addition, one can argue on the basis of engineering insight that the integration order
for civil infrastructure data is not an issue [8].



The nonlinear generalisation of EG is therefore evident (at least in basic terms), one
simply carries out a nonlinear regression of the variable of interest on the others. With
this viewpoint, the problem is thus reduced to a choice of multivariate regression al-
gorithm. This choice is influenced by a number of factors: explanatory power of the
algorithm, computational cost etc. The algorithm presented here will be the Treed Gaus-
sian Process (TGP) algorithm; while this is a universal approximator, it does come at a
computational cost. However, an important aspect of the TGP algorithm is that it can fit
piecewise-smooth models, and this makes it well-suited to the case study presented here,
in which the long-term trends switch between two linear regimes. In this case, the TGP
can discover important physics in the data, i.e. the points at which the trends switch. The
problem considered here will be that of monitoring and damage detection for the Z24
Bridge [9]. In fact, the TGP model has already proved effective for the Z24 case in terms
of fitting surrogate models [10].

The layout of the paper is as follows. The next section will give a brief summary
of the TGP model, followed by a section introducing the problem of interest — moni-
toring the Z24 Bridge. The results of the analysis will then be presented and discussed,
followed by conclusions.

TREED GAUSSIAN PROCESSES (TGPS)

TGPs are part of a class of algorithms called regression trees. The idea of a regres-
sion tree is fairly simple to state (much of the theory and practice of such trees can be
attributed to Breiman and co-workers, and a good reference is [11]. The idea is to par-
tition the independent variable space into regions over which the response behaviour is
smooth and fit low-order regression models over each region. If the partitioning is carried
out by hand, the resulting problem is still amenable to linear least-squares methods. The
idea, however, of a regression tree in general is that the partitions are determined from
the data as part of the modelling problem; this renders the estimation problem highly
nonlinear and alternatives to least-squares are needed. Breiman and co-workers estab-
lished a greedy algorithm for fitting the trees that gave good (but suboptimal) solutions.
If an effective partition of the data is found, linear regression models over each distinct
region can give excellent results; however, in principle, any algorithm can be used once
the data have been partitioned into sensible regions. Once the concept of Classification
and Regression Trees (CART) was established, arguably the next major advance was the
development of a Bayesian framework for the algorithm [12, 13]. The new algorithm
was based on rigorous concepts of probability theory and proved an effective departure
from the greedy algorithm. In Bayesian CART, a prior probability distribution was pro-
posed over all possible tree structures as well as all possible coefficients; this was then
refined by using the data to determine which tree was supported by the greatest evidence.
The original formulation is too complicated to describe here without taking this paper a
long way from its illustrative objectives. In the original Chipman formulation [12, 13],
all the regression models within the tree were linear; this restriction was later removed
by Gramacy, who replaced the linear models by more powerful Gaussian Process (GP)
models; Gramacy’s work also extended the Bayesian formulation of the problem signif-
icantly [14]. The Treed Gaussian Process (TGP) partitions the variable space in much
the same way as a Bayesian CART and then fits GP regressors over each independent
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Figure 1. Schematic of the Z24 Bridge.

region. The software used for modelling in this work is the TGP package written by
Gramacy in the language R [15]. Although the full capability of the TGP is needed in
general switching models, it will be shown that a treed linear model also proves effective
here.

THE Z24 BRIDGE

The Z-24 Bridge was a pre-stressed concrete highway bridge in Switzerland (1), sub-
jected to a comprehensive monitoring campaign under the ‘SIMCES project’ [16], prior
to its demolishment in the late 1990s. The bridge has since become a landmark bench-
mark study in SHM and the subject of a great many papers. The monitoring campaign,
which spanned a whole year, tracked modal parameters and included extensive measure-
ment of the environmental factors affecting the structure, such as air temperature, soil
temperature, humidity etc. The Z24 monitoring exercise was an important study in the
history of SHM developments because towards the end of the monitoring campaign re-
searchers were able to introduce a number of realistic damage scenarios to the structure.
In order, these scenarios were [17]:

* Pier settlement.
* Tilt of foundation followed by settlement removal.

 Concrete spalling.
* Landslide.



 Concrete hinge failure.
* Anchor head failure.

* Tendons rupture.

The SHM features of interest here are the natural frequencies of the bridge, which
were tracked over the period of a year and additionally over the period where the bridge
was damaged according to the various scenarios. Apart from the almost-unique oppor-
tunity provided by the test to extract real damage-state data, the fact that the monitoring
extended over an entire year meant that a complete picture of annual variations in the
confounding influences were obtained. Modal properties of the bridge were extracted
from acceleration data [9]. Figure 2 shows a time history of each of the four natural
frequencies between 0-12 Hz of the bridge. The solid vertical line marks the start of
the period where the different levels of damage (starting with pier lowering) were in-
troduced. Gaps where the monitoring system failed have been removed. On inspection
of Figure 2, the natural frequencies of the bridge are by no means stationary. There are
some large fluctuations in the first half of the time history before the introduction of any
damage. These fluctuations occurred during periods of very cold temperatures and have
been associated with an increase in stiffness caused by stiffening of the asphalt layer on
the bridge deck. The natural frequency time histories are an excellent example of how
damage-sensitive parameters can also be very sensitive to environmental variations, in
this case temperature. For the purpose of the current paper, it is important to note that
the effect of temperature on the bridge is nonlinear — in fact, piecewise-linear. Figure
3 plots how the first natural frequency changes with temperature); the bilinear form of
the temperature dependence means that switching models should prove useful. For the
purposes of this case study, the second natural frequency will be discussed, as the first
frequency is rather insensitive to damage.
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Figure 2. First four natural frequencies of the Z24 Bridge (increasing vertically). Note that the
second natural frequency is the most sensitive to damage (right of the dotted line), but also
varies significantly with temperature in the undamaged state (left of the dotted line).
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Figure 3. Detail of variation of second natural frequency with temperature.

RESULTS

The results here are all based on selecting the second natural frequency f> data from
the Z24 Bridge, and regressing them on the others { f1, f3, fs}. In explicit terms, the
model is thus,

foi = 9(fuis fra, fui) + € (1)

with the cointegrated residual e thus,

E:f2i_g<f1i>ff37f4i) (2)

where ¢ is the sampling index of the data points.

If the process is succesful, the residual will be purged of the influence of temperature
and will then only show novelty if damage is present. With this in mind, the idea will be
to construct a control chart for € by plotting it together with some confidence interval.
Damage will then be signalled if the control variable departs the confidence interval. A
significant advantage of the Bayesian approach followed here is that confidence intervals
are produced naturally. As a baseline, the first results presented here will be for a treed
linear model; this will make the overall model piecewise-linear (PWL). In fact, as the
nature of the temperature variation is PWL, one would expect the treed-linear model to
be both effective and parsimonious. In any machine learning problem, it is important
to select appropriate training data; in this case, one requires data over which there is
significant variation in temperature, but no effect of damage. When the algorithm is
applied, the reults on the training data are shown in Figure 4.

The fit to the training data is excellent. A number of predictions are possible, the
‘kriging mean’ is shown here as it is arguably the simplest — representing the usual
posterior mean of the Bayesian predictive distribution. As one can see, the predictions
follow the measured data closely with the true values within the 99% confidence interval.
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Figure 4. Cointegrated residual for a Bayesian treed linear model: training data.

Figure 5 shows the results over the test data, which in this case cover all the normal
condition data immediately following the training data and the damage-state data.

The results are excellent; the residual stays within bounds throughout all the nor-
mal period and departs as required when the damage-states arise at about point 1400.
The model is thus an effective novelty detector, purged of the confounding influence of
temperature. As mentioned earlier, the model also provides physical insight in that it
gives an estimate of the point at which the natural frequencies induce the switch in the
model. This information is available in the tree which is estimated as the most probable
(maximum a postiori (MAP)); the result here is shown in Figure 6.

The next model fitted was a full treed GP. In fact, Gramacy’s algorithm has a useful
point of sophistication. During the analysis, when a GP is fitted on a specific leaf of
the tree, the algorithm can compare the Bayesian model evidence for a GP to that for a
linear model; if the evidence supports a linear model, it is accepted [14]. The results on
the training data are actually visually indistinguishable from those for the treed linear
model, so they are not shown here. In contrast, the results on the testing data (Figure 7),
are a little different.

In fact, the results are not quite as good as for the linear model; the confidence
intervals expand a little more towards the end of the dataset and reduce the sensitivity to
damage. The damage is detected later at a higher level of severity. This behaviour is not
completely unexpected as the temperature dependence is known to be piecewise-linear.
Occam’s razor would appear to select the linear model. A slightly surprising outcome
of fitting the TGP is that it provides a much simpler MAP tree (Figure 8), the model
switches only once, on the first natural frequency (‘x1’ in the figure represents f;). The
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Figure 5. Cointegrated residual for a Bayesian treed linear model: test data.
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Figure 6. MAP trees for the Bayesian treed linear model: the two most probable are shown.
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Figure 7. Cointegrated residual for a full TGP model (with limiting linear models): test data.

reason for the simpler tree is not clear, but could be a result of more complex behaviour
immediately at the switching point.

CONCLUSIONS

The aim of this paper is rather modest; in some ways, it could be regarded as ‘com-
pletism’. Once one adopts an Engle-Granger approach to nonlinear cointegration, one
could demonstrate results for any appropriately-powerful nonlinear regressor. However,
the authors believe that some aspects of the model class here distinguish it from other
nonparametric machine learners. In the first case, the TGPs can fit piecewise-smooth
functions; this makes them optimal for any functions which do truly switch between
physical regimes. Secondly, the estimated switching points can provide physical insight
which would be absent if a smooth regressor were adopted. This insight is arguably
somewhat indirect for the case study here, as the model switches on natural frequencies;
however, with a little post-analysis effort, this can be converted to the point at which the
model switches in terms of temperature.
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Figure 8. MAP tree for the full TGP model with limiting linear models.
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