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ABSTRACT

Modal analysis has developed into a major technology for the study of structural dy-
namics in the past several decades. Through it, complex structural dynamics phenomena
can be represented in terms of structural invariants, i.e., the modal parameters: natu-
ral frequencies, damping ratios and mode shapes. Operational Modal Analysis (OMA)
deals with the estimation of modal parameters on vibration data measured for operational
conditions, when the excitation on the structure is not measured. In this work, OMA is
performed on a wind turbine blade undergoing wind tunnel testing. These tests included
different wind speeds, pitch angles and also different health conditions of the blade,
where masses of different magnitude were fixed to the blade on different locations to em-
ulate damage conditions. In order to monitor the modal parameters across multiple days
of varied tests in the wind tunnel, the Polymax modal parameter estimator was imple-
mented, coupled with an Automated Modal Analysis methodology. This methodology
included an automatic modal parameter selection technique, using a Machine Learning
(ML) clustering algorithm, coupled with a modal tracking procedure which applied sta-
tistical thresholds on the modal parameters’ values. The tracking procedure searches for
modes similar to the ones calculated for healthy conditions. The results show how the
modal parameters of the wind turbine blade vary with the different measured conditions
in the wind tunnel. Moreover, a damage detection methodology is implemented to dif-
ferentiate between the healthy and damaged conditions on the blade, by leveraging an
anomaly detection algorithm using the Multivariate Gaussian Distribution (MGD). This
algorithm takes as input the modal parameters calculated by the previous Automated
Modal Analysis methodology and detects statistical deviations among them which could
indfcate the presence of damage. All steps of this work contribute to developing an auto-
matic framework able to detect damages on a wind turbine blade, and therefore perform
Structural Health Monitoring (SHM) for different operational conditions.
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INTRODUCTION

At present, wind power is an increasingly significant contributor to energy production
across many countries and is regarded as one of the most attractive sources of renewable
energy. According to recent data, in 2021, the installation of 17.4GW of new wind power
capacity in Europe led to wind farms generating 437 TWh of electricity, which met 15%
of the electricity demand in the EU-27 and UK [1f]. It is expected that by the mid-
2020s, wind power will become the top source of electricity in Europe, and by 2030, it is
projected to meet 25% of the EU’s total electricity requirements [2]]. To ensure that wind
turbines (WTs) generate optimal energy output, advanced Structural Health Monitoring
(SHM) techniques are of paramount importance. Such techniques enable swift detection
of damage, enabling timely maintenance and repair operations that prevent expensive
damages. Blade malfunction is the fifth most common cause of WT failures, accounting
for approximately 6.2% of all WT malfunctions [3].

The term Structural Health Monitoring (SHM) broadly refers to a dependable sys-
tem that can identify and evaluate any adverse changes in a structure that may occur
during regular operation or as a result of damage [4]. Typically, SHM methodologies are
developed around the study of the dynamic vibrational behavior of a structure. Modal
analysis is an approach that uses a set of modal parameters (such as natural frequencies,
damping ratios, and mode shapes) to describe the dynamic behavior of a structure. These
parameters are sensitive to damage, making modal analysis a popular technique for the
development of SHM methodologies. For instance, deviations in natural frequencies and
mode shapes have been used to detect damage in wind turbine blades [5-7]]. In order to
apply an Automated Modal Analysis methodology, three essential steps are required:
modal parameter estimation (MPE), automated modal parameter selection (AMPS), and
modal tracking [6}7].

In addition, Structural Health Monitoring (SHM) techniques have also incorporated
Machine Learning (ML) algorithms, taking advantage of their advanced computational
capabilities and automatic frameworks. ML algorithms can extract features from data
and classify them for defect detection purposes. For instance, Support Vector Machines
(SVMs) have been successfully employed to identify structural damage in jacket-type
wind turbines in [8]. In [9], SVMs and other algorithms have been used for detecting
icing on blades, a common issue arising from operational conditions. These approaches
have emerged as promising avenues of research for SHM applications in a variety of
fields [[10,/11].

In this study, a wind tunnel measurement campaign was conducted to analyze the
vibration behavior of a composite wind turbine blade subject to wind excitation under
both healthy and damaged conditions (damage was simulated by adding masses to the
structure). Both accelerometers and strain gauges were installed in the blade to record
these measurements. Subsequently, an Automated Modal Analysis methodology was
employed to automatically calculate and track the modal parameters for the numerous
measurements taken in the wind tunnel. The natural frequencies, one of the modal pa-
rameters, were then used as input to an anomaly detection algorithm that leverages the
Multivariate Gaussian Distribution.

This paper is structured as follows. The "Theoretical Background’ section introduces
the Multivariate Gaussian Distribution (MGD) for anomaly detection. The *Wind Tun-



nel Measurements’ section describes the experimental setup and the Automated Modal
Analysis results. The ’Anomaly Detection’ section presents the algorithms used to mon-
itor the health status of the wind turbine blade. Finally, the main conclusions are sum-
marized in the Conclusion’ section.

THEORETICAL BACKGROUND

Anomaly Detection with the Multivariate Gaussian Distribution

Anomaly detection machine learning algorithms are frequently utilized when datasets
contain an unequal distribution of examples among each category. This situation often
arises in structural monitoring applications, where the majority of the data is recorded for
the structure’s healthy state. Attempting to train supervised learning algorithms on such
an imbalanced dataset may cause the algorithm to become biased towards the dominant
category.

In scenarios where datasets have an imbalanced number of examples between each
class, the Multivariate Gaussian Distribution (MGD) can be effectively implemented in
an anomaly detection algorithm. This approach involves fitting a MDG to the features
of the dataset, denoted as x, using equation [T} By using this method, the algorithm can
effectively model the distribution of the data and identify anomalies based on deviations
from the expected pattern.
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Next, a procedure for automatic threshold selection is applied to learn a threshold
value e capable of distinguishing between training examples representing anomalies
(p(x) < €) and those representing healthy values of the structure (p(x) > €). The perfor-
mance and working principles of this anomaly detection algorithm on a two-dimensional
dataset are shown in Figure[I] The majority of the data is clustered near the center of the
distribution, while anomalous data examples lie far from the center and are identified as
anomalies (points encircled in red).

WIND TUNNEL MEASUREMENT CAMPAIGN

In this study, a measurement campaign was conducted in a wind tunnel to investi-
gate the behavior of a glass-fiber reinforced polymer (GFRP) blade under wind excita-
tion. Accelerometers and strain gauges were utilized to respectively obtain acceleration
and strain measurements during the experimental campaign. Figure 2] depicts the blade
mounted in the wind tunnel and the measurement setup.

Figure [3|displays the GFRP blade studied in this work, which was manufactured us-
ing uniaxial and biaxial GFRP shells, balsa core, and glue. This blade has a total mass of



Figure 1. Working principle of anomaly detection using the Multivariate Gaussian Distri-
bution (MGD). Anomalous data will diverge from the bulk of the data fitted by a MGD.

Figure 2. Wind tunnel measurements on the wind turbine blade.

0.720 kg. Additionally, this image also shows the placement of the sensors (accelerome-
ters and strain gauges) on the blade, which were overall distributed on different sections
of the blade, going from the root to the tip. The damages were similarly placed in the
three depicted locations, close to the root, in the middle, and close to the tip of the blade.
These different damage locations were chosen to assess the influence of damage location
on the ability of an anomaly detection algorithm to detect structural damage. Figure [4]
shows the four different metallic masses which were glued to the blade on the previously
mentioned locations, so to simulate damaged states.

Other than the damage location and magnitude, also the wind speed of the tunnel and
the pitch angle of the blade were varied. Table || summarizes all the quantities used for
each parameter varied in this experimental campaign. The damage location are measured
across the length of the blade (root of the blade at 0.000m; tip of the blade at 1.230m).
Overall, a total of 307 measurements were collected, 91 for healthy scenarios and 216
for damaged scenarios.

Figure 3. GFRP wind turbine blade with the displayed locations for the: accelerometers
(green); strain gauges (blue); damages (red).



Figure 4. Masses used to simulate damaged states on the wind turbine blade.

TABLE I. VARIED QUANTITIES ON THE MEASUREMENT CAMPAIGN.

Varied quantities on the measurement campaign

wind speeds (m/s) | pitch angles (deg) | damage locations (m) | damage magnitudes (g)
14.2 15 0.191 7.8
16.2 25 0.655 14.8
18.2 35 1.041 21.8
- - - 29.1

AUTOMATED OPERATIONAL MODAL ANALYSIS

The data collected for all the measurements was automatically processed using an
Automated Operational Modal Analysis procedure, which comprised three steps: modal
parameter estimation; automated modal parameter selection; modal tracking (as shown
in figure [5)). The former step was performed with the Operational Polymax technique
, in the Siemens Simcenter Testlab™ software. The step of automatic modal param-
eter selection was performed with an in-house developed technique, making use of the
DBSCAN (density-based spatial clustering of applications with noise) clustering tech-
nique. The latter step was performed by applying statistical thresholds to track the modes
across multiple measurements, using nine different modesets calculated for healthy con-
ditions of the blade as reference. Considering the statistical thresholds used to correlate
a certain mode ¢ with a reference mode re f, 10% was used for the distance of frequency
(f), and 40% for the distance of Modal Assurance Criterion (MAC), calculated between
two respective mode shapes (¢).
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The Operational Modal Analysis (OMA) results for the structure are presented in Ta-
ble [lI, While a total of 9 modes were initially identified, a lower number of modes were
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Figure 5. Automated Operational Modal Analysis procedure.



Modal tracking results
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Figure 6. Frequencies tracked through the Automated Modal Analysis procedure, for the
data of the: a) accelerometers b) strain gauges.

ultimately selected for tracking purposes, as some modes were difficult to identify in the
stabilization diagram as they were poorly excited by the wind. For the accelerometers,
all but the eight mode (a poorly excited torsional mode) were tracked. For the strain
gauges, all but the second, seventh, and ninth modes were tracked. The second and sev-
enth modes were not tracked due to being in-plane bending modes that were difficult to
identify on the stabilization diagram, while the signal-to-noise ratio of the strain gauges
for the ninth mode was too high.

TABLE II. NATURAL FREQUENCIES AND DAMPING RATIOS IDENTIFIED FOR
THE WIND TURBINE BLADE

mode number 1 2 3 4 5 6 7 8 9
natural frequency (Hz) | 14.1 25.0 40.2 85.7 98.5 158.1 206.1 247.9 328.5
damping ratio (%) 47 18 32 17 21 1.8 1.2 2.0 0.9

The results of modal tracking are shown in the figures [6| respectively for the acceler-
ation and strain data. For acceleration data, the eight modes mentioned in the previous
paragraph can be distinguished with the different colors, as for the six modes tracked
with strain data. As expected, there is some variance across the natural frequencies due
to the inclusion of measurements with damaged scenarios of the blade. This can be seen
as section of divergent natural frequencies amongst the tracking results shown in the

figures [0]

ANOMALY DETECTION

To develop a Structural Health Monitoring (SHM) methodology for detecting dam-
age states on wind turbine blades subject to wind excitation, the Multivariate Gaussian
Distribution was applied in an anomaly detection algorithm, as explained in the theoret-
ical section. The input of this algorithm were the natural frequencies tracked with the
automated modal analysis methodology, shown in figures[6a]and[6al The healthy dataset
was divided into a training set containing 70% of the data, a validation set containing
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Figure 7. Receiver Operating Characteristic (ROC) curve obtained with the Anomaly
Detection algorithm for the data of the: a) accelerometers b) strain gauges

15% of the remaining healthy data along with an equal number of damaged samples,
and a test set containing the remaining data. The Multivariate Gaussian Distribution
was fitted to the healthy training data, and the validation dataset was used to automat-
ically determine the threshold for separating anomalies. Alternatively, this step could
be performed by applying a threshold calculated based on a certain number of standard
deviations from the healthy data, without a validation dataset.

Figures[7aland[7b|show the Receiver Operating Characteristic (ROC) curves obtained
with the anomaly detection algorithm applied both to the acceleration and strain data.
Additionally, the Area Under Curve (AUC) obtained for both classifications is shown
in these figures. The AUC represents a collective measure of the performance obtained
with this technique across all possible thresholds used for classification. The overall
results are presented in table(IIl} indicating that although fewer strain modes were tracked
compared to acceleration modes, the use of strain data led to higher accuracy in anomaly
detection.

TABLE III. RESULTS OF THE ANOMALY DETECTION ALGORITHM

Accelerometers | Strain gauges
Area Under Curve (%) 86.11 87.75
Validation Accuracy (%) | 76.9 87.5
Test Accuracy (%) 75.5 84.7
CONCLUDING REMARKS

In summary, a robust Structural Health Monitoring (SHM) methodology was suc-
cessfully developed for detecting damages on a wind turbine blade using operational
data obtained from its vibration under wind excitation. This methodology involved an
Automated Operational Modal Analysis step, followed by an anomaly detection algo-
rithm utilizing the Multivariate Gaussian Distribution (MGD). Both acceleration and
strain data were processed, resulting in high detection accuracy, with slightly better per-



formance achieved by using strain data. Future work will focus on examining the impact
of using a reduced number of sensors on the detection accuracy of blade anomalies.
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