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ABSTRACT

The development of offshore wind power has increased rapidly in recent years due
to its clean and renewable nature. However, the design of offshore wind turbines is
difficult and costly. As a result, the development cost remains high. Among them,
fatigue of the steel structures in offshore wind turbine foundations is one of the most
severe structural diseases, significantly affecting offshore wind development and
maintenance costs. This paper proposes a feasible approach to study the fatigue
damage of offshore wind turbines using the in-situ strain data based on a statistical
analysis of stress amplitude and cycles. First, the hot-spot stress at the corresponding
monitoring locations is calculated using the strain monitoring data from an offshore
wind farm in the East China Sea. Second, the stress amplitude and cycles are solved
using the rain-flow counting method. Subsequently, the weekly distribution statistics of
stress amplitude and cycles are fitted using Weibull distribution. The Chi-square test is
used to verify the confidence level of the probability density function of the weekly
stress amplitude and cycles. Finally, according to the statistical distribution of stress
amplitude and cycles, the cumulative damage is analyzed based on the hot-spot stress
S-N curve of steel structures with cathodic protection in seawater. The fatigue damage
obtained based on the monitored data is roughly consistent with the numerical
calculation results. However, the proposed method underestimated the fatigue damage
compared to the design results obtained by numerical prediction. Though these fatigue
results are not mutually consistent, they can all confirm that the wind turbine would not
suffer fatigue issues at present, as the fatigue damages are all below the threshold.
Further efforts should be made to handle this inconsistency in fatigue prediction.
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INTRODUCTION

Offshore wind power is one of the most mature and effective types of offshore
renewable energy. However, the external environment where the offshore wind
turbines are located includes the coupling effect of wind, wave, ocean current, and
complex marine geological conditions, resulting in design difficulties and high costs
in offshore wind development. To reduce the cost of offshore wind development, it
is necessary to reduce the lifecycle cost as much as possible, the cost of offshore wind
turbine construction and maintenance costs are all included. Aiming at optimizing
operation and maintenance costs, the fatigue issue of welding parts (tubular joints,
etc.) in steel structures is especially critical in offshore wind turbines due to the
structural complexity and their harsh environments.

Researchers in civil engineering (bridge structures) have already done some work
in the assessment of structural fatigue based on monitoring data. Abdullah et al.
(Abdullah et al. 2021) used the Gumbel distribution model combined with strain data
to evaluate the reliability of the fatigue life of automotive leaf springs under variable
amplitude road load. On-site monitoring data is also analyzed using the empirical
mode decomposition (EMD) algorithm and rain flow counting method (Lei et al.
2022) to evaluate the fatigue remaining life of rigid suspension brackets in highway
arch bridges. To evaluate the fatigue life of steel bridges, typical time histories of
dynamic strain (Li et al. 2003) and universal standard stress spectrum considering
different load effects (Ye et al. 2012) were obtained, then the fatigue life of key
welding details on the bridge can be evaluated. Low-stress cycles were found to be
misleading and should be handled with care. Otherwise, they can lead to inaccurate
fatigue life results (Deng et al. 2015). Method to reduce the uncertainty of fatigue life
assessment was also discussed (Pasquier et al. 2014). Deep Learning method was
also introduced to the fatigue evaluation of experimental beams in the lab (Gulgec et
al. 2020). The development history and current status of fatigue assessment for steel
bridges and the related methods were also summarized (Ye et al. 2014). However,
there is currently relatively little work on fatigue assessment based on measured
strain data in offshore engineering (especially offshore wind turbines) worldwide
(Hibler and Rolfes 2022; Tarpget al. 2022).

This paper proposes a feasible approach to study the fatigue damage of offshore
wind turbines using the in-situ strain data from an offshore wind farm in Jiangsu,
China. The proposed fatigue evaluation method is based on the statistical analysis of
stress amplitude and cycles, and the results are far from satisfactory at this moment.
However, the method can estimate fatigue damage early in a structural failure, thus
avoiding unnecessary damage. Therefore, this paper provides a new perspective to
improve the reliability of the whole lifecycle of offshore wind turbines, thus reducing
the operation and maintenance costs.

METHODOLOGY AND RESULTS

Wind Turbine Foundation and Related Design Results



The foundation type of the offshore wind farm studied is a composite bucket
foundation, as shown in Figure 1. The first-order modal frequency of the foundation is
fo = 0.2176Hz. A finite element model was used to analyze the steel composite
foundation. The stress results are shown in Figure 2. As shown, the maximum Mises
stress on the foundation is about 256MPa. Meanwhile, it can be seen that the maximum
stress is located at the intersection of the support rod and the main beam (see Figure 2).
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Figure 2. Overall stress distribution of steel composite cylindrical foundation
The fatigue results are presented below. For the intersection node between the
support rod and the main beam, the polished S-N curve is used, and the total fatigue
damage is 0.802, corresponding to a fatigue life of 31.2 years. The remaining weld joints
adopt S-N curves without grinding. The fatigue damage is shown in Table 1.

TABLE 1. FATIGUE DAMAGE RESULTS
Fatigue by wind load Fatigue by wave load Total Fatigue Life

1 0.67 0.01 0.68 36.8
2 0.38 0.025 0.405 61.7
3 0.121 0.005 0.126 198.4
S 0.79 0.012 0.802 31.2
X 0.483 0.024 0.507 49.3
N 0.017 0.000 0.017 1470.6

Strain Sensors and Monitoring Data

Based on the finite element results, the strain monitoring locations for the steel
bucket foundation are shown in Figure 3 (left: side view. right: top view). The
distribution of strain monitoring sensors is shown in Table 2.



TABLE 2. STRAIN MONITORING POINTS (PW: PREVAILING WIND, PPW:
PERPENDICULAR TO PW. N: NORMAL. A: ABNORMAL)

Sensor 1 2 3 4 5 6 7
Direction PW PPW PW PPW PW PW PW
Status N N A N N A N

Among the strain sensors, sensors 3 and 6 are damaged and no strain data for the
corresponding location exists. On the other hand, sensors 1, 2, 4, 5, and 7 are normal,
and there are several strain monitoring data segments from November 2021 to February
2023, with a sampling interval of 5 minutes. The strain measurement range is tensile
1200 e, compressive 1200 pe, with a resolution of 0.3% F.S. (full scale) as 7.2 pe.
Unfortunately, the data is discontinuous, and the total time length for each data segment
is different. In addition, some monitoring data recorded temperature data during the
same period synchronously.

Figure 3. Strain sensors for steel bucket foundation
There are missing values and outliers in the strain data. After data preprocessing and
filling of the strain monitoring data, the overall distribution of the strain monitoring data
is shown in Figure 4. From the above strain data distribution, it can be seen that the
strain data does not exhibit prominent statistical characteristics.
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Figure 4. Distribution of strain data (September 2022)
Hot-spot Stress Computation

In the design of offshore wind structures, the hot-spot stress S-N curve is usually
used for structural damage evaluation. The assessment of fatigue damage is carried out
by analyzing the hot-spot stress characteristics.



Assuming that the foundation of the wind turbine is a uniform cross-section beam,
the relationship between axial stress o-, bending moment M, and strain is

o= ? = FEe )

Where y is the distance from the neutral plane of the beam under bending, and I is the
moment of inertia of the beam relative to the centroid axis. On the outer surface of the
beam y = D/2, D is the outer diameter of the beam. The sign of the axial stress o needs
to be determined based on the sign of strain obtained from monitoring (or the direction
of the bending moment). The foundation type of offshore wind turbine may be a
monopile, high-pile cap, suction bucket, or jacket type. The stress-strain relationship
corresponding to the steel structures can be approximated following the correlation
relationship of a uniform cross-section beam, so the nominal stress corresponding to the
monitoring locations can be approximated as o =~ Ee.

According to the sensor locations in Figure 3, sensors 1 to 4 are located on the main
beam, and sensors 5 to 7 are located on the supporting rod. According to the SCF
calculation results, it can be concluded that the SCF of the connection node between the
support rod and main beam of the steel bucket foundation is K=1.48 (sensors 5, 6, and
7). The SCF of joints on the main beam is K=1.17 (upper) and 1.09 (lower),
corresponding to sensors 1, 2, 3, and 4, respectively. Therefore, the hot-spot stress at the
corresponding sensor location is s = Ko-.

S-N Curve of Hot-spot Stress for Offshore Wind Turbines

According to DNV RP-C203, the durability curve of steel is defined as:

logN =loga—mlog$§ ®)
N is the number of stress cycles, S is the stress amplitude, m is the slope parameter, and
log a is the intercept of log N axis. According to the differences in slope parameters and
intercept, the DNV RP C203 specification defined the S-N curves for different structures
and joints.

According to DNV RP C203, the W3 to B1 curves correspond to steel structures
with cathodic protection in seawater. Since strain sensors 1 to 7 belong to tubular joints
and the corresponding weld seam is unilateral, the T-curve, C-curve, D-curve, or F-
curve can be selected. At the same time, referring to design data, the S-N curve in API
specifications (after this referred to as API curve) can also be used. According to Figure
5, considering the differences in fatigue performance corresponding to different curves,
the C, API, and F curves can be selected for fatigue evaluation at the measurement point,
corresponding to the minimum and maximum damage that may occur to the structure,
respectively.
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Figure 5. Comparison of S-N curves applicable to strain measurements

The API curve, C curve, and F curve were selected for fatigue assessment, while the
intersection point of the two linear segments of the C curve and the F curve is Ny = 10°,
and the intersection point of two linear segments of the API curve is Ny = 107,

As the elastic modulus of DH36 steel commonly used in offshore wind structures in
China is 206 GPa, the minimum stress that can be obtained is estimated as 2.19 MPa
considering that the strain gauge resolution is 7.2 1e. However, due to the limitation on
sensor resolution, the stress values obtained below 2.19 MPa have no practical
significance, and these values are modified to 2.19MPa.

Statistical Characteristics of Stress Amplitude and Cycles

Some previous studies have shown that high-stress cycling under variable amplitude
cyclic loading can affect the fatigue damage behavior of small stress amplitudes below
the fatigue limit. Therefore, the fatigue damage of small stress amplitude cyclic loading
below the fatigue limit cannot be ignored, which can be made up of extensive stress
cycles.

Considering the large cycles under small load amplitudes, it is recommended to
reduce the number of cycles under the fatigue limit by a reduction factor according to
BS 5400, which is defined as

_ [Si/S0)? Si<So

1 S, >80
Where Sp and S; are the fatigue limit and the stress amplitude, respectively. When the
fatigue endurance limit is set to N =107, the fatigue limit So of the C curve corresponds
t0=73.10 MPa, the D curve corresponds t0=52.63 MPa, and the T curve corresponds
t0=67.09 MPa.

The statistical characteristics of stress amplitude and number of cycles are analyzed
in the following. Based on the overall distribution and confidence level of stress
amplitude and cycles in the monitoring data, the typical distribution parameters are used
to estimate the fatigue damage at each location.

The distribution of stress amplitude and cycles are shown in Figure 6. According to
the rain flow counting method, daily statistics may highlight the influence of small stress
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Figure 6. Distribution of weekly stress amplitude and cycles

amplitude segments. Conversely, weekly statistics may emphasize the influence of
more significant stress amplitude segments in the data. In the calculations, we found
that the two statistical methods have little impact on the distribution of stress statistics,
though there are certain differences in stress amplitude and cycles when the stress
amplitude is small. Therefore, only weekly statistics are used in the following analysis.

The following describes the statistical feature estimation procedure for stress
amplitude and cycles. According to Figure 6, the Weibull distribution or normal
distribution is assumed, and hypothesis testing is performed. Since the occurrence
probability of abnormal data with a small significance level is smaller, the distribution
with a small significance level is considered as the obtained distribution form.

Statistical Distribution of Hot-spot Stress

The Weibull distribution commonly used in engineering includes three-parameter
distribution and two-parameter distribution forms. The probability density function of
the three-parameter Weibull distribution is

K (x=y N1 (22
Foe Ak, y) = =) AT xz0
0 ,x<0

Where the scale parameter A = 0, the shape parameter k= 0, the position parameter ¥
is unrestricted, and the function is defined at x=7 (0 when x<7). The probability density
function of the two-parameter Weibull dkistlributicln is
FxAk) = {%(T) e x20
0 , x<0
Where the scale parameter A = 0, the shape parameter k= 0, and the function definition
domain is x=0.

Using the least square method, different numbers of weekly data were selected to
fit the Weibull distribution parameters. The fitting results are shown in Figure 7, where
the enlarged image of the red area A is shown on the right. As shown, the fitted curves
have significant differences when using 5-9 weeks of data. However, when weekly data
of 10 weeks or more are used, there is no significant difference in the fitting curves of
the stress amplitude and cycles. Therefore, weekly monitoring data consisting of 12
weeks are used to fit the distribution characteristics of stress amplitude and cycles.
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Figure 7. Fitting results of the probability distribution (A: local view)

Using monitoring data from 12 weeks for weekly distribution fitting, the parameters
of the three-parameter distribution are 1=24.9777, k=1.3036, and ¥=0.128284, while
the parameters of the two-parameter Weibull distribution are 1=25.13, k=1.31223.

To verify the Goodness of fit, the COD (Coefficient of Determination) R? of the two
distributions is used, which is the proportion of the variation in the dependent variable
that is predictable from the independent vgriable. .

R2 1 il ]:z) ’ 5)=lZyi -
S0 — ) nt

Where yi is the i-th value of the data, ¥ is the mean value, f; is the fitted value of the i-th
data, and n is the number of samples. R? ranges from 0 to 1, representing the percentage
of the square of the correlation between the predicted and actual values of the target
variable. An R? value close to 1 indicates high credibility in the model-fitting results.
For example, the R? of the three-parameter Weibull distribution is 0.997558, and the R?
of the two-parameter Weibull distribution is 0.997556. The R? values of both fitting
models are close to 1, indicating that the model fits well.

Considering that there is little difference between the two kinds of Weibull
distribution, a two-parameter Weibull distribution model is proposed to describe the
probability distribution of the stress amplitude and cycles. The obtained probability
density function of cycles concerning stress amplitude is as follows

S \03 ( 3 )1.31223
v(S) =0.052218 (—) e \B13 (6)
o (S 25.13/ o o
The fitting results of the two-parameter Weibull distribution are shown in Figure 8.
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Figure 8. Fitting results of the cumulative probability distribution
The Chi-square test is used to verify the confidence level of the probability density
function of the weekly stress amplitude and cycles. It is shown in the Chi-square test



that when the unknown distribution follows a specific probability distribution, the
statistics y° should satisfy ;(Z(k—r—l)

1= -r-1) (7)

i=1 r]p|
If y° < ;(5 (k -r —1) , the monitoring data follows the given probability distribution at

the significance level «

Assuming that the stress statistics follow the above two-parameter Weibull
distribution, r=2, the stress amplitude sample can be divided into k=6 non-intersecting
subsets (no less than five required by the Chi-square test). When the monitoring data is
substituted into the distribution function, we can obtain the following results in Table 3.

TABLE 3. CHI-SQUARE TEST TABLE
S (0,10) [10,20) [20,30) [30,40) [40,50) [50,100)
£ 10 10 10 10 24 8

A Al Ay Az A4 As Ag
P 02580 02654 01934 0.1244 0.0739  0.0849
f2/(np;) 38756 37681 5.1703 8.0377 77.9695 7.5393

Based on the above results, it can be seen that,
kg2

V2= ;{_;;,_”_1063605 480 = 6.3605 < y2,5(3) = 7.815
i=1

Therefore, the monitored data follows the proposed two-parameter Weibull distribution
at the significance level & = 0.05. This means that the monitoring data follows the above
two-parameter Weibull distribution, the probability of abnormal (non-Weibull) data
occurrence is not higher than 5%, and the confidence level of the monitoring data
following a two-parameter Weibull distribution is not less than1 — @ = 95%.

Fatigue Evaluation using the Distribution of Stress Amplitude and Cycles

Subsequently, the fatigue damage of offshore wind turbines is directly calculated
based on the hot-spot stress S-N curve. The results are susceptible to distribution
parameters, and further investigations are in progress to improve its reliability. Here, we
just present a first proof of concept and briefly verify the results.

According to the design results, the required first-order modal frequency of the
bucket foundation is fo = 0.2176Hz. Therefore, its natural vibration period is To =
4.5956s. As the modal frequency for a typical wind turbine should always be larger than
the required frequency value otherwise fault or shutdown would occur, the maximum
number of cycles per week is

T
Nt = — = 131604.4780 ®)
Ty

Where T is the total time duration in a week, T = 604800 seconds.

According to the probability density function of the distribution of the weekly stress
amplitude and cycles in Equation (6), the number of stress cycles under the stress
amplitude level S is N(S), which is

N(S) = Nan X fn(S) ©)



Considering that the hot-spot stress S-N curve with cathodic protection in the
seawater used is bilinear, the fatigue damage calculation is carried out in two steps
concerning the stress amplitudes separated by the intersection of two linear segments of
the S-N curve. The stress amplitude at the intersection of two segments satisfies

1
logSy = o loga — log Ny (10)

Where the corresponding number of cycles Ng=1 < 10°, therefore Sq = 65.8163 MPa.

In the first stress range where the stress amplitude S is less than Sgq, the parameter of
the S-N curve is m1,10g; @1. According to the probability density function in Equation
(6), numerical integration is performed to solve the fatigue damage in the range 0 ~ Sq

Sd N(S
Dy = f ( )dS 1)
o M
Where N is the cycle number (life) corresponding to the stress amplitude S
N, = lologm&ﬁml log;y S 12)

In the second stress range where the stress amplitude is greater than Sq, the parameter
of the S-N curve is m2,10g,9az2. According to the probability density function in
Equation (6), numerical integration is performed for the fatigue damage in the range S >

Sq
b2 N © 13
? -[Sd N2 ( )
Where N is the cycle number (life) corresponding to the stress amplitude S
Ny = 101081082-malogie S )

TABLE 4. COMPARISON OF FATIGUE RESULTS

Sensor 5 Numerical Result
Fatigue damage (25 years) 0.540 0.802
Fatigue life (year) 46.30 31.20

According to Equations (11) ~ (14), the fatigue damage of sensor 5 can be solved,
as shown in Table 4. The fatigue damage obtained by the monitoring data is slightly
smaller than the numerical result (about -32.67%), leading to a longer fatigue life than
the numerical one (about +48.40%). Therefore, it can be concluded that the proposed
method underestimated the fatigue damage compared with the design results obtained
by numerical prediction. The difference happens due to several factors.

First, the proposed method is highly dependent on the proposed statistical
distribution fitted using the obtained stress amplitude and cycles. Besides, though the
in-situ strain monitoring is designed and installed carefully, the obtained results can still
be contaminated with data noise and thus be erroneous. Inappropriate distribution of
stress amplitude and cycles used, or bad strain data, can all lead to untrustworthy fatigue
results.

Second, the fatigue results obtained by the numerical method are obtained using the
statistical design input, which is always considered with a return period of 50 years in
China. The monitoring data may never present a result that complies with the statistical
characteristics.

However, all the results confirm that the wind turbine would not suffer fatigue issues
at present as the fatigue damages are all below the threshold, though the results are not
mutually consistent. Further efforts should be made to handle this inconsistency in
fatigue prediction.




CONCLUSIONS

To optimize offshore wind turbines' operation and maintenance costs, this paper
proposes a feasible approach to study fatigue damage using the in-situ strain data
from an offshore wind farm in China. The proposed fatigue evaluation method is
based on the statistical analysis of stress amplitude and cycles, which were fitted using
the Weibull distribution. The Chi-square test is used to verify the confidence level of
the probability density function of the weekly stress amplitude and cycles. According
to the statistical distribution of stress amplitude and cycles, the cumulative damage is
analyzed based on the hot-spot stress S-N curve of steel structures containing cathodic
protection in seawater. The fatigue damage obtained based on the monitored data is
roughly consistent with the numerical calculation results. However, the proposed
method underestimated the fatigue damage compared to the design results obtained by
numerical prediction. Though these fatigue results are not mutually consistent, they can
all confirm that the wind turbine would not suffer fatigue issues as the fatigue damages
are all below the threshold. Further efforts should be made to handle this inconsistency
in fatigue prediction. The fatigue results obtained from in-situ monitoring data are far
from satisfactory at this moment, and further efforts should be made to handle the
inconsistency in fatigue prediction. However, the method can estimate fatigue damage
early in a structural failure, thus avoiding unnecessary damage. Therefore, this paper
provides a new perspective to improve the reliability of the whole lifecycle of
offshore wind turbines, thus reducing the operation and maintenance costs.
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