
Fatigue Evaluation of Offshore Wind Turbines 
Using In-Situ Strain Data 
 

HOU QIAO, GUANGMING XU, CE SHEN, YONGLEI SU, WEI LI 
and CHUANRUI GUO 

  
 

ABSTRACT 
 

The development of offshore wind power has increased rapidly in recent years due 
to its clean and renewable nature. However, the design of offshore wind turbines is 
difficult and costly. As a result, the development cost remains high. Among them, 
fatigue of the steel structures in offshore wind turbine foundations is one of the most 
severe structural diseases, significantly affecting offshore wind development and 
maintenance costs. This paper proposes a feasible approach to study the fatigue 
damage of offshore wind turbines using the in-situ strain data based on a statistical 
analysis of stress amplitude and cycles. First, the hot-spot stress at the corresponding 
monitoring locations is calculated using the strain monitoring data from an offshore 
wind farm in the East China Sea. Second, the stress amplitude and cycles are solved 
using the rain-flow counting method. Subsequently, the weekly distribution statistics of 
stress amplitude and cycles are fitted using Weibull distribution. The Chi-square test is 
used to verify the confidence level of the probability density function of the weekly 
stress amplitude and cycles. Finally, according to the statistical distribution of stress 
amplitude and cycles, the cumulative damage is analyzed based on the hot-spot stress 
S-N curve of steel structures with cathodic protection in seawater. The fatigue damage 
obtained based on the monitored data is roughly consistent with the numerical 
calculation results. However, the proposed method underestimated the fatigue damage 
compared to the design results obtained by numerical prediction. Though these fatigue 
results are not mutually consistent, they can all confirm that the wind turbine would not 
suffer fatigue issues at present, as the fatigue damages are all below the threshold. 
Further efforts should be made to handle this inconsistency in fatigue prediction. 
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INTRODUCTION 

 

Offshore wind power is one of the most mature and effective types of offshore 

renewable energy. However, the external environment where the offshore wind 

turbines are located includes the coupling effect of wind, wave, ocean current, and 

complex marine geological conditions, resulting in design difficulties and high costs 

in offshore wind development. To reduce the cost of offshore wind development, it 

is necessary to reduce the lifecycle cost as much as possible, the cost of offshore wind 

turbine construction and maintenance costs are all included. Aiming at optimizing 

operation and maintenance costs, the fatigue issue of welding parts (tubular joints, 

etc.) in steel structures is especially critical in offshore wind turbines due to the 

structural complexity and their harsh environments.  

Researchers in civil engineering (bridge structures) have already done some work 

in the assessment of structural fatigue based on monitoring data. Abdullah et al. 

(Abdullah et al. 2021) used the Gumbel distribution model combined with strain data 

to evaluate the reliability of the fatigue life of automotive leaf springs under variable 

amplitude road load. On-site monitoring data is also analyzed using the empirical 

mode decomposition (EMD) algorithm and rain flow counting method (Lei et al. 

2022) to evaluate the fatigue remaining life of rigid suspension brackets in highway 

arch bridges. To evaluate the fatigue life of steel bridges, typical time histories of 

dynamic strain (Li et al. 2003) and universal standard stress spectrum considering 

different load effects (Ye et al. 2012) were obtained, then the fatigue life of key 

welding details on the bridge can be evaluated. Low-stress cycles were found to be 

misleading and should be handled with care. Otherwise, they can lead to inaccurate 

fatigue life results (Deng et al. 2015). Method to reduce the uncertainty of fatigue life 

assessment was also discussed (Pasquier et al. 2014). Deep Learning method was 

also introduced to the fatigue evaluation of experimental beams in the lab (Gulgec et 

al. 2020). The development history and current status of fatigue assessment for steel 

bridges and the related methods were also summarized (Ye et al. 2014). However, 

there is currently relatively little work on fatigue assessment based on measured 

strain data in offshore engineering (especially offshore wind turbines) worldwide 

(Hübler and Rolfes 2022; Tarpø et al. 2022).  

This paper proposes a feasible approach to study the fatigue damage of offshore 

wind turbines using the in-situ strain data from an offshore wind farm in Jiangsu, 

China. The proposed fatigue evaluation method is based on the statistical analysis of 

stress amplitude and cycles, and the results are far from satisfactory at this moment. 

However, the method can estimate fatigue damage early in a structural failure, thus 

avoiding unnecessary damage. Therefore, this paper provides a new perspective to 

improve the reliability of the whole lifecycle of offshore wind turbines, thus reducing 

the operation and maintenance costs.  

 

 

METHODOLOGY AND RESULTS  
 

Wind Turbine Foundation and Related Design Results  

 



 

 

   
Figure 1. Schematic diagram of steel composite bucket foundation  

The foundation type of the offshore wind farm studied is a composite bucket 

foundation, as shown in Figure 1. The first-order modal frequency of the foundation is 

f0 = 0.2176Hz. A finite element model was used to analyze the steel composite 

foundation. The stress results are shown in Figure 2. As shown, the maximum Mises 

stress on the foundation is about 256MPa. Meanwhile, it can be seen that the  maximum 

stress is located at the intersection of the support rod and the main beam (see Figure 2).  

 
Figure 2. Overall stress distribution of steel composite cylindrical foundation 

The fatigue results are presented below. For the intersection node between the 

support rod and the main beam, the polished S-N curve is used, and the total fatigue 

damage is 0.802, corresponding to a fatigue life of 31.2 years. The remaining weld joints 

adopt S-N curves without grinding. The fatigue damage is shown in Table 1. 

TABLE 1. FATIGUE DAMAGE RESULTS 

 Fatigue by wind load Fatigue by wave load Total Fatigue Life 

1 0.67 0.01 0.68 36.8  

2 0.38 0.025 0.405 61.7  

3 0.121 0.005 0.126 198.4  

S 0.79 0.012 0.802 31.2  

X 0.483 0.024 0.507 49.3  

N 0.017 0.000 0.017 1470.6  

 

Strain Sensors and Monitoring Data  
 

Based on the finite element results, the strain monitoring locations for the steel 

bucket foundation are shown in Figure 3 (left: side view. right: top view). The 

distribution of strain monitoring sensors is shown in Table 2. 



 

 

TABLE 2. STRAIN MONITORING POINTS (PW: PREVAILING WIND, PPW: 

PERPENDICULAR TO PW. N: NORMAL. A: ABNORMAL) 

Sensor 1 2 3 4 5 6 7 

Direction PW PPW PW PPW PW PW PW 

Status N N A N N A N 

 

Among the strain sensors, sensors 3 and 6 are damaged and no strain data for the 

corresponding location exists. On the other hand, sensors 1, 2, 4, 5, and 7 are normal, 

and there are several strain monitoring data segments from November 2021 to February 

2023, with a sampling interval of 5 minutes. The strain measurement range is tensile 

1200 , compressive 1200 , with a resolution of 0.3% F.S. (full scale) as 7.2 . 

Unfortunately, the data is discontinuous, and the total time length for each data segment 

is different. In addition, some monitoring data recorded temperature data during the 

same period synchronously.  

 
Figure 3. Strain sensors for steel bucket foundation  

There are missing values and outliers in the strain data. After data preprocessing and 

filling of the strain monitoring data, the overall distribution of the strain monitoring data 

is shown in Figure 4. From the above strain data distribution, it can be seen that the 

strain data does not exhibit prominent statistical characteristics. 

 
Figure 4. Distribution of strain data (September 2022) 

Hot-spot Stress Computation  

 

In the design of offshore wind structures, the hot-spot stress S-N curve is usually 

used for structural damage evaluation. The assessment of fatigue damage is carried out 

by analyzing the hot-spot stress characteristics.  



 

 

Assuming that the foundation of the wind turbine is a uniform cross-section beam, 

the relationship between axial stress , bending moment M, and strain is 

 

 (1) 

Where y is the distance from the neutral plane of the beam under bending, and I is the 

moment of inertia of the beam relative to the centroid axis. On the outer surface of the 

beam , D is the outer diameter of the beam. The sign of the axial stress  needs 

to be determined based on the sign of strain obtained from monitoring (or the direction 

of the bending moment). The foundation type of offshore wind turbine may be a 

monopile, high-pile cap, suction bucket, or jacket type. The stress-strain relationship 

corresponding to the steel structures can be approximated following the correlation 

relationship of a uniform cross-section beam, so the nominal stress corresponding to the 

monitoring locations can be approximated as . 

According to the sensor locations in Figure 3, sensors 1 to 4 are located on the main 

beam, and sensors 5 to 7 are located on the supporting rod. According to the SCF 

calculation results, it can be concluded that the SCF of the connection node between the 

support rod and main beam of the steel bucket foundation is K=1.48 (sensors 5, 6, and 

7). The SCF of joints on the main beam is K=1.17 (upper) and 1.09 (lower), 

corresponding to sensors 1, 2, 3, and 4, respectively. Therefore, the hot-spot stress at the 

corresponding sensor location is . 

 

S-N Curve of Hot-spot Stress for Offshore Wind Turbines 

 

According to DNV RP-C203, the durability curve of steel is defined as: 

 
 (2)  

N is the number of stress cycles, S is the stress amplitude, m is the slope parameter, and 

 is the intercept of  axis. According to the differences in slope parameters and 

intercept, the DNV RP C203 specification defined the S-N curves for different structures 

and joints. 

According to DNV RP C203, the W3 to B1 curves correspond to steel structures 

with cathodic protection in seawater. Since strain sensors 1 to 7 belong to tubular joints 

and the corresponding weld seam is unilateral, the T-curve, C-curve, D-curve, or F-

curve can be selected. At the same time, referring to design data, the S-N curve in API 

specifications (after this referred to as API curve) can also be used. According to Figure 

5, considering the differences in fatigue performance corresponding to different curves, 

the C, API, and F curves can be selected for fatigue evaluation at the measurement point, 

corresponding to the minimum and maximum damage that may occur to the structure, 

respectively. 

 



 

 

 
Figure 5. Comparison of S-N curves applicable to strain measurements 

 

The API curve, C curve, and F curve were selected for fatigue assessment, while the 

intersection point of the two linear segments of the C curve and the F curve is , 

and the intersection point of two linear segments of the API curve is . 

As the elastic modulus of DH36 steel commonly used in offshore wind structures in 

China is 206 GPa, the minimum stress that can be obtained is estimated as 2.19 MPa 

considering that the strain gauge resolution is 7.2 . However, due to the limitation on 

sensor resolution, the stress values obtained below 2.19 MPa have no practical 

significance, and these values are modified to 2.19MPa. 

 

Statistical Characteristics of Stress Amplitude and Cycles 

 

Some previous studies have shown that high-stress cycling under variable amplitude 

cyclic loading can affect the fatigue damage behavior of small stress amplitudes below 

the fatigue limit. Therefore, the fatigue damage of small stress amplitude cyclic loading 

below the fatigue limit cannot be ignored, which can be made up of extensive stress 

cycles. 

Considering the large cycles under small load amplitudes, it is recommended to 

reduce the number of cycles under the fatigue limit by a reduction factor according to 

BS 5400, which is defined as 

 

 
Where S0 and Si are the fatigue limit and the stress amplitude, respectively. When the 

fatigue endurance limit is set to N = , the fatigue limit S0 of the C curve corresponds 

to=73.10 MPa, the D curve corresponds to=52.63 MPa, and the T curve corresponds 

to=67.09 MPa.  

The statistical characteristics of stress amplitude and number of cycles are analyzed 

in the following. Based on the overall distribution and confidence level of stress 

amplitude and cycles in the monitoring data, the typical distribution parameters are used 

to estimate the fatigue damage at each location. 

The distribution of stress amplitude and cycles are shown in Figure 6. According to 

the rain flow counting method, daily statistics may highlight the influence of small stress  



 

 

 

Figure 6. Distribution of weekly stress amplitude and cycles  

amplitude segments. Conversely, weekly statistics may emphasize the influence of 

more significant stress amplitude segments in the data. In the calculations, we found 

that the two statistical methods have little impact on the distribution of stress statistics, 

though there are certain differences in stress amplitude and cycles when the stress 

amplitude is small. Therefore, only weekly statistics are used in the following analysis.  

The following describes the statistical feature estimation procedure for stress 

amplitude and cycles. According to Figure 6, the Weibull distribution or normal 

distribution is assumed, and hypothesis testing is performed. Since the occurrence 

probability of abnormal data with a small significance level is smaller, the distribution 

with a small significance level is considered as the obtained distribution form. 

 

Statistical Distribution of Hot-spot Stress 

 

The Weibull distribution commonly used in engineering includes three-parameter 

distribution and two-parameter distribution forms. The probability density function of 

the three-parameter Weibull distribution is 

 (3) 

Where the scale parameter ≥ 0, the shape parameter k≥ 0, the position parameter  

is unrestricted, and the function is defined at x≥  (0 when x< ). The probability density 

function of the two-parameter Weibull distribution is 

 (4) 

Where the scale parameter ≥ 0, the shape parameter k≥ 0, and the function definition 

domain is x≥0.  

Using the least square method, different numbers of weekly data were selected to 

fit the Weibull distribution parameters. The fitting results are shown in Figure 7, where 

the enlarged image of the red area A is shown on the right. As shown, the fitted curves 

have significant differences when using 5-9 weeks of data. However, when weekly data 

of 10 weeks or more are used, there is no significant difference in the fitting curves of 

the stress amplitude and cycles. Therefore, weekly monitoring data consisting of 12 

weeks are used to fit the distribution characteristics of stress amplitude and cycles. 

 



 

 

 
Figure 7. Fitting results of the probability distribution (A: local view) 

Using monitoring data from 12 weeks for weekly distribution fitting, the parameters 

of the three-parameter distribution are =24.9777, k=1.3036, and =0.128284, while 

the parameters of the two-parameter Weibull distribution are =25.13, k=1.31223.  

To verify the Goodness of fit, the COD (Coefficient of Determination) R2 of the two 

distributions is used, which is the proportion of the variation in the dependent variable 

that is predictable from the independent variable. 

 ，  (5) 

Where yi is the i-th value of the data,  is the mean value, fi is the fitted value of the i-th 

data, and n is the number of samples. R2 ranges from 0 to 1, representing the percentage 

of the square of the correlation between the predicted and actual values of the target 

variable. An R2 value close to 1 indicates high credibility in the model-fitting results. 

For example, the R2 of the three-parameter Weibull distribution is 0.997558, and the R2 

of the two-parameter Weibull distribution is 0.997556. The R2 values of both fitting 

models are close to 1, indicating that the model fits well. 

Considering that there is little difference between the two kinds of Weibull 

distribution, a two-parameter Weibull distribution model is proposed to describe the 

probability distribution of the stress amplitude and cycles. The obtained probability 

density function of cycles concerning stress amplitude is as follows 

 (6) 

The fitting results of the two-parameter Weibull distribution are shown in Figure 8. 

 
Figure 8. Fitting results of the cumulative probability distribution 

The Chi-square test is used to verify the confidence level of the probability density 

function of the weekly stress amplitude and cycles. It is shown in the Chi-square test 



 

 

that when the unknown distribution follows a specific probability distribution, the 
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If  2 2 1k r    , the monitoring data follows the given probability distribution at 

the significance level  . 

Assuming that the stress statistics follow the above two-parameter Weibull 

distribution, r=2, the stress amplitude sample can be divided into k=6 non-intersecting 

subsets (no less than five required by the Chi-square test). When the monitoring data is 

substituted into the distribution function, we can obtain the following results in Table 3. 

TABLE 3. CHI-SQUARE TEST TABLE  

S (0,10) [10,20) [20,30) [30,40) [40,50) [50,100) 

 10 10 10 10 24 8 

       

 0.2580 0.2654 0.1934 0.1244 0.0739 0.0849 

 3.8756 3.7681 5.1703 8.0377 77.9695 7.5393 

Based on the above results, it can be seen that, 

 
Therefore, the monitored data follows the proposed two-parameter Weibull distribution 

at the significance level . This means that the monitoring data follows the above 

two-parameter Weibull distribution, the probability of abnormal (non-Weibull) data 

occurrence is not higher than 5%, and the confidence level of the monitoring data 

following a two-parameter Weibull distribution is not less than  = 95%. 

 

Fatigue Evaluation using the Distribution of Stress Amplitude and Cycles 

 

Subsequently, the fatigue damage of offshore wind turbines is directly calculated 

based on the hot-spot stress S-N curve. The results are susceptible to distribution 

parameters, and further investigations are in progress to improve its reliability. Here, we 

just present a first proof of concept and briefly verify the results. 

According to the design results, the required first-order modal frequency of the 

bucket foundation is f0 = 0.2176Hz. Therefore, its natural vibration period is T0 = 

4.5956s. As the modal frequency for a typical wind turbine should always be larger than 

the required frequency value otherwise fault or shutdown would occur, the maximum 

number of cycles per week is 

 (8) 

Where T is the total time duration in a week, T = 604800 seconds. 

According to the probability density function of the distribution of the weekly stress 

amplitude and cycles in Equation (6), the number of stress cycles under the stress 

amplitude level S is N(S), which is 
 (9) 



 

 

Considering that the hot-spot stress S-N curve with cathodic protection in the 

seawater used is bilinear, the fatigue damage calculation is carried out in two steps 

concerning the stress amplitudes separated by the intersection of two linear segments of 

the S-N curve. The stress amplitude at the intersection of two segments satisfies 

 (10) 

Where the corresponding number of cycles Nd=1×106, therefore Sd = 65.8163 MPa. 

In the first stress range where the stress amplitude S is less than Sd, the parameter of 

the S-N curve is . According to the probability density function in Equation 

(6), numerical integration is performed to solve the fatigue damage in the range 0 ~ Sd  

 (11) 

Where N1 is the cycle number (life) corresponding to the stress amplitude S 
 (12) 

In the second stress range where the stress amplitude is greater than Sd, the parameter 

of the S-N curve is . According to the probability density function in 

Equation (6), numerical integration is performed for the fatigue damage in the range S > 

Sd  

 (13) 

Where N2 is the cycle number (life) corresponding to the stress amplitude S 
 (14) 

TABLE 4. COMPARISON OF FATIGUE RESULTS  

 Sensor 5 Numerical Result 

Fatigue damage (25 years)  0.540 0.802  

Fatigue life (year) 46.30 31.20 

According to Equations (11) ~ (14), the fatigue damage of sensor 5 can be solved, 

as shown in Table 4. The fatigue damage obtained by the monitoring data is slightly 

smaller than the numerical result (about -32.67%), leading to a longer fatigue life than 

the numerical one (about +48.40%). Therefore, it can be concluded that the proposed 

method underestimated the fatigue damage compared with the design results obtained 

by numerical prediction. The difference happens due to several factors.  

First, the proposed method is highly dependent on the proposed statistical 

distribution fitted using the obtained stress amplitude and cycles. Besides, though the 

in-situ strain monitoring is designed and installed carefully, the obtained results can still 

be contaminated with data noise and thus be erroneous. Inappropriate distribution of 

stress amplitude and cycles used, or bad strain data, can all lead to untrustworthy fatigue 

results. 

Second, the fatigue results obtained by the numerical method are obtained using the 

statistical design input, which is always considered with a return period of 50 years in 

China. The monitoring data may never present a result that complies with the statistical 

characteristics.  

However, all the results confirm that the wind turbine would not suffer fatigue issues 

at present as the fatigue damages are all below the threshold, though the results are not 

mutually consistent. Further efforts should be made to handle this inconsistency in 

fatigue prediction. 



 

 

 

CONCLUSIONS 
 

To optimize offshore wind turbines' operation and maintenance costs, this paper 

proposes a feasible approach to study fatigue damage using the in-situ strain data 

from an offshore wind farm in China. The proposed fatigue evaluation method is 

based on the statistical analysis of stress amplitude and cycles, which were fitted using 

the Weibull distribution. The Chi-square test is used to verify the confidence level of 

the probability density function of the weekly stress amplitude and cycles. According 

to the statistical distribution of stress amplitude and cycles, the cumulative damage is 

analyzed based on the hot-spot stress S-N curve of steel structures containing cathodic 

protection in seawater. The fatigue damage obtained based on the monitored data is 

roughly consistent with the numerical calculation results. However, the proposed 

method underestimated the fatigue damage compared to the design results obtained by 

numerical prediction. Though these fatigue results are not mutually consistent, they can 

all confirm that the wind turbine would not suffer fatigue issues as the fatigue damages 

are all below the threshold. Further efforts should be made to handle this inconsistency 

in fatigue prediction. The fatigue results obtained from in-situ monitoring data are far 

from satisfactory at this moment, and further efforts should be made to handle the 

inconsistency in fatigue prediction. However, the method can estimate fatigue damage 

early in a structural failure, thus avoiding unnecessary damage. Therefore, this paper 

provides a new perspective to improve the reliability of the whole lifecycle of 

offshore wind turbines, thus reducing the operation and maintenance costs.  
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