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ABSTRACT 

The operational life of offshore wind turbines is in part driven by the fatigue life of key 
structural components, such as the substructure. In recent years, fatigue life manage- 
ment of operational assets has become evermore important, as older farms are closing 
on their design lifetime and newer farms are designed with tighter margins. To support 
decisions on fatigue lifetime, it is advantageous to monitor the fatigue progression in 
these structures through SHM. However, a full instrumentation of every asset in a farm 
to assess the fatigue life of the substructure is considered economically infeasible. 
The drive for SHM in wind has been accompanied by the increased availability of in- 
telligent data-driven methodologies which have attempted to provide the same infor- 
mation without the need for additional hardware. One such cost-effective approach, as 
described in [1], uses the available supervisory control and data acquisition (SCADA) 
systems, coupled with acceleration measurements to predict the fatigue life of an off- 
shore wind turbine. The use of acceleration measurement data has been proven critical 
for capturing the complex dynamics of offshore wind turbines. In this contribution, we 
present the results of said data-driven approach using SCADA and Internet of Things 
(IoT) accelerometer installed at nacelle-level to monitor the fatigue life for the entirety 
of a real-world offshore wind farm comprised of 23 turbines, with a specific focus on 
long-term damage equivalent fatigue loads (DEL) estimation [2]. The availability of ac- 
celeration measurements for all locations in particular, is fundamental, as to cover all 
possible differences in natural frequencies between turbines would be nearly impossible 
if solely relying on wave and tidal data. To achieve this goal, a neural network architec- 
ture is used, enhanced by physics-informed learning focused on long-term estimation, 
trained and validated on so-called fleet-leader (three turbines instrumented with strain 
gauges, which provide the ground truth). In this study, we pay special attention to the 
farm-wide validation, cross-validation and extrapolation of these models as well as the 
performance for different operational conditions. Finally, this study is undertook for a 
real-world instrumentation setup, unparalleled in its scale, and can thus be indicative of 
future trends for SHM in offshore wind: farm-wide instrumentation and monitoring of 
structural health based on acceleration measurements, enabling a greater trustworthiness 
on reliability and durability estimation over the serviceable lifetime. 
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INTRODUCTION

With concerns regarding proper and sustainable asset management increasing, along
with older wind farms honing in on their design lifetime and newer farms being de-
signed with smaller margins, the fatigue life management of offshore wind turbines has
become evermore important in the current industrial and research landscape. Specif-
ically, the monitoring of the fatigue progression through structural health monitoring
(SHM), namely on the substructure, is increasingly commonplace among operators as
an additional supporting tool for informed fatigue lifetime decisions. Keeping tabs on
the fatigue life of offshore wind turbines is particularly important, as these structures
are designed for dynamics rather than for bearing capacity [3]. Therefore, in order to
replace visual inspections, which can be dangerous, time consuming and costly, re-
mote, non-intrusive health monitoring systems have been developed [4]. With fatigue
being a long time-scale type of damage [5], the sensor selection has traditionally lied
with strain gauge instrumentation [6, 7]. However, farm-wide strain gauge installation
lacks economical viability, and alternatives using supervisory control and data acquisi-
tion (SCADA) coupled with acceleration data for farm-wide fatigue load estimation have
appeared [8]. The use of acceleration measurement data in particular, has been proven
critical to capture the complex dynamics of offshore wind turbines [9].
Nevertheless, despite diverse data-oriented (based on long-term SCADA and accelera-
tions) methodologies for fatigue load estimation on offshore wind turbines’ substructures
(from artificial neural networks [10], to Gaussian processes regression [11], graph neural
networks [12], and physics-guided neural networks [1]), all hereto presented approaches
have still been in the proof-of-concept stage as, at most, only a reduced number of real-
world turbines of a farm have been sufficiently instrumented. In this contribution we
present - to the best of the authors’ knowledge - the first truly farm-wide implementation
of a long-term fatigue load estimation (in the form of damage equivalent loads, DEL)
data-driven model. We specifically pay attention to the validation, cross-validation and
extrapolation of the trained models, both for fore-aft, as for side-to-side long-term DEL
estimation (based on three months of real-world training data).

METHODOLOGY AND DATA

In the current contribution, three months of data (December 2022 − February 2023)
from a real-world offshore wind farm with XL monopile foundations (9.5 MW turbines
and water depths of up to 36 m) located in the Belgian North Sea was used. More
specifically, SCADA data and accelerations from a nacelle-installed ’IoT’ accelerometer
were collected for all locations within the farm and, for three locations (WT11, WT14,
WT18) − representative of the different seabed-depth clusters present in the farm −,
strain gauges installed along the inner circumference at the tower-transition piece inter-
face level. The full dataset description can be found in Table I.

The presence of strain gauges on three of the turbines is relevant because, albeit the
farm-wide strain gauge instrumentation is cost-prohibitive, as discussed in the intro-
duction, whatever data-driven model that uses as input SCADA and accelerations, will
still require the knowledge of a ground truth (a damage-sensitive feature, only attainable
through strain gauge instrumentation) for the training locations before farm-wide extrap-



TABLE I: DESCRIPTION OF DATASETS FROM THE MEASUREMENT
CAMPAIGN. NOTE THE CONFLICTING SAMPLING FREQUENCIES. EACH

DATA-TYPE IS PROCESSED INTO 10-MINUTE TARGET STATISTICS.

Sensor Sampling frequency Variable Units
In

pu
t

SCADA 1 Hz

Rotational speed rpm
Yaw angle deg
Pitch angle deg
Power kW
Wind speed m.s−1

Wind direction deg

Target statistics (10-min): mean, minimum, maximum, standard deviation.

Accelerometer 12.5 Hz

FA acceleration g
SS acceleration g
Z acceleration g

Target statistics (10-min): mean, minimum, maximum, root mean square.

Ta
rg

et Strain gauges 30 Hz
Normal bending moment (Mtn) MNm
Lateral bending moment (Mtl) MNm

Target statistics (10-min): damage equivalent loads (DELtn and DELtl).

olation. The strain gauges are therefore relevant, as they enable the calculation of the
normal and lateral bending moments (Mtn and Mtl, respectively). Then, by employing
a rainflow counting algorithm [13, 14], holding the linear damage accumulation hypoth-
esis as true (Palmgren-Miner’s rule) [15], and through the employment of the Wöhler
exponent (the negative inverse slope of the SN curve) [16], a damage-sensitive feature,
the damage equivalent loads (DEL), can be calculated for any ten minute window [17].
Therefore, given the Wöhler exponent, m, the number of cycles, ni, of a given stress
range, σi and the tower-transition piece outer and inner radii, ro and ri, respectively at
strain gauge locations we can calculate the DEL, as given by Equation 1 [18]. For this
contribution, and following the farm’s design documentation, the value of 5 was used for
m and Neq = 107, a predefined number of cycles.

DEL =
1

Neq

·

(∑
i

ni ·
(
∆σi · π

2
· (r4o − r4i )

ro

)m
)1/m

(1)

The DELs are calculated for both the FA (DELtn) and SS (DELtl) directions. How-
ever, as discussed in [1], accuracy on DEL estimation at a ten-minute level isn’t a suf-
ficient condition to determine a model’s success: one must also be able to accumulate
DELs on a longer timeframe. Thus, by Palmgren-Miner’s rule, we can further com-
bine n equivalent load ranges that have been derived for the same reference cycle num-
ber and Wöhler exponent through the m-root of the weighted summation of the m-
power DEL instance [19], as seen in Equation 2. Here DELLT represents the long-term



DEL accumulation of i ten-minute DEL instances. In this equation every i ten-minute
time-instance DEL represents a damage load with identical occurrence probability of
1/n [20].

DELLT =

(
1

n

n∑
i=1

DELm
i

)1/m

(2)

The availability of strain measurements (and therefore, DELs) at three locations opens
the door at two different methodological philosophies: fleet-leader models and population-
based models (see Figure 1). In the first, a single instrumented wind turbine is used for
the training of a model which then extrapolates farm-wide [21]. This hypothesis isn’t that
far-fetched, as the population of structures within a wind farm are tendentially homoge-
neous (nominally-identical machines) and the inclusion of accelerations in the training
dataset is believed (and empirically confirmed [9]) to sufficiently cover the variability
within the farm for most operational cases. The second philosophy, hinges on data avail-
ability on a population level. Here, we follow the grammar and discussion of [22], where
models of a given feature space attempt to capture the form of the object of interest, i.e.,
the ’essential’ nature of the object (let’s call it the baseline behaviour, shared across the
population) and the variations (deviations from this ideal essential nature) found across
any real-world population, in a latent space shared by the population. In the specific
case of this contribution, the implementation of a fleet-leader philosophy would lead to
a latent function, f , trained on strain gauge-instrumented turbine. As for a population-
based approach, it is only possible to have DEL measurements for three turbines, thus
not a full population. However, one can argue that, as each of the instrumented turbines
represents a design cluster (dependent on the seabed depth, which ought to be the only
variation of note between turbines), a latent function, f ′, of this sample of the population
would be sufficient to accurately represent the form and variation of the farm through a
latent space shared by all turbines.
In this contribution we attempt to guide the neural network learning by including phys-

ical knowledge specific to the problem at hand, in a so-called physics-guided machine
learning approach (Φ−ML). Specifically, we include the Minkowski logarithmic error
(MLE) introduced in [23], described by Equation 3 for m = 5 and Y, Ŷ, the mea-
sured and predicted vectors. It is based on the Lp norm and the logarithm function,
and attempts to prioritise long-term DEL performance (DELLT ), whilst maintaining
ten-minute level prediction accuracy.

L(Y, Ŷ) =

(
n∑

i=0

| log(yi + 1)− log(ŷi + 1)|m
)1/m

(3)

The final architecture of the neural network model was thus achieved two-fold: firstly,
by using a recursive feature elimination with built-in cross-validated selection of the
best number of features (RFECV [24]). Secondly, using a Bayesian hyperparameter
optimization algorithm [25]), with hyperparameters h ∈ H = {1, . . . , 5} hidden layers,
n ∈ N = {32, 64, 96, . . . , 512} neurons, a ∈ A = {ReLU,GELU,SELU} activation



(a) Fleet-leader. (b) Population-based.

Figure 1: Different training philosophies’ diagrams. (a), fleet-leader concept, wherein a
neural network model (latent function f for inputs x) is trained for a single turbine
(fleet-leader) and applied to the remainder turbines. (b), population-based concept,
where the latent function f ′ is trained based on data from all instrumented turbines

(population).

function types [26], d ∈ D = {0, 0.1, 0.2, 0.3} dropout rate and o ∈ O = {1 · e−2, 1 ·
e−3, 1 · e−4} learning rate of the optimizer (Adam [27]). The tracked loss was the MLE
and the monitored metrics the mean squared error and mean absolute error. The full
methodological overview can be seen in Figure 2.

Figure 2: Overview of methodology employed, using either, i. a population-based
approach (PB), where we randomly pick a third of each turbine’s data, or ii. a
fleet-leader approach (FL). The model architecture is attained by performing

dimensionality reduction through a recursive feature estimation algorithm with
cross-validation (RFECV) and through Bayesian hyperparameter optimization (BHPO).
The final model (latent function, f ) employs physics-guided machine learning (Φ−ML)
through its loss function (L, the Minkowski logarithmic error) and estimates ten-minute

DELs (DEL10), further re-scaled long-term (DELLT ).



RESULTS AND DISCUSSION

Following the aforementioned methodology, three fleet-leader (WT11, WT14, WT18)
and a population-based model types were trained, each with five runs where the only
change was the random seed value used for a 80-20 train-test split to ensure variability.
In Figure 3 we can observe the long-term fore-aft DEL relative error (δLT ) for each of
the instrumented turbines (and the average error) based on the training dataset (turbine).
In this figure we can observe several relevant differences between the models trained on

Figure 3: Box plot of long-term fore-aft DEL relative error (δLT , [%]) over three months
based on the training turbine models (five runs).

different datasets. Firstly, when taking a look at the fleet-leader models (WT11, WT14,
WT18), we can observe that some perform better than others, i.e., models trained on
WT11 have errors centered around zero with a spread of ±10%, WT18 has a much
higher average error for all turbines (centered at +10 ± 5%), while WT14 falls some-
where in the middle. This can mean that WT11 faces a higher variability of loading
during its operation, which allows it to better encompass the cases found at the other lo-
cations. Additionally, the models trained using a population-based approach (combining
a third of the data of each turbine) appear to be the best performing, with errors centered
around zero and a smaller spread than WT11, as well as the smallest average δLT . This
is to be expected, as the population-based approach combines data from the three in-
strumented turbines, providing a wider coverage of the operational conditions faced by
the turbines. One important caveat on this and the ensuing figures is that one shouldn’t
conclude performance solely based on the average δLt, but also w.r.t the individual per-
formance for the instrumented turbines.
Albeit not being the end-goal of this contribution, one can also confer the ten-minute
level model performance based on the mean absolute error, normalized w.r.t the mean
DEL (NMAE) and the coefficient of determination (R2), as seen in Figure 4.
The information transmitted by Figure 4a and Figure 4b can be very succinctly resumed

as confirming the hypotheses of Figure 3: the population-based model has the lowest



(a) (b)

Figure 4: Models’ ten-minute level performance based on (a) mean absolute error,
normalized w.r.t the mean DEL and (b) the coefficient of determination.

NMAE and the best R2 (above 0.9, which is rather positive), followed by WT11.
We can also take a look at the results for the side-to-side models, plotting their δLT as in
Figure 3.
Here again we can repeat the previous conclusions in broad-strokes: WT11 produces

Figure 5: Box plot of long-term side-to-side DEL relative error (δLT , [%]) over three
months based on the training turbine models (five runs).



better models than the other fleet-leaders, but this time around, the distinction between
WT11 and the population-based models is less clear-cut. Both perform rather well, albeit
WT11 has a slight positive error bias (i.e., under-predicting models), whilst the inverse
is true for PB. Both present a spread of ±5%. A possible explanation for why these
models are so similar is two-fold: firstly, the dynamics faced by instrumented turbines
are already rather similar from the get-go; secondly, by sampling one third of the data
of each turbine, the population-based approach can also loose some relevant informa-
tion. But generally, we can say that for fore-aft and side-to-side, the population-based
approach is better able to represent the underlying form of the farm, with there being a
clear trade-off: a PB strategy doesn’t allow for cross-validation in the truest sense: one
can’t cross-validate the model for an unseen turbine, although one can test PB models
in the remainder two thirds of unseen data from the three instrumented turbines. In this
contribution, the choice lies with carrying with the best-performing PB model, as it is
believe to better generalize farm-wide.
Thus, we can finally plot the farm-wide normalized monthly fore-aft DEL (long-term
DEL re-scaling for the month of January) for four ’representative’ turbines in Figure 6.

In this figure, one can observe how the results appear to be physically meaningful at

Figure 6: Farm-wide plot of normalized monthly fore-aft DEL (January) for turbines
representative of free-flow and progressively wake-affected strings.



first-sight: the turbine turbine representative of the free-flow string (predominantly free-
stream facing locations) presents a lower monthly DEL, which is physically coherent.
Thereafter, one can also observe how the DEL increases in the wake propagation direc-
tion, with each increasing wake-affected string. Finally, this figure can furthermore be
seen as the culmination of this methodology, developed first as a proof-of-concept in [1],
and here presented for a real-world farm-wide accelerometer installation: a physically
meaningful farm-wide monthly quantification of DEL.
This end-result is believed to be highly relevant for the industry at-large: whereas pre-
vious models could safely be assumed to accurately represent relative farm-wide be-
haviour, which might help to pinpoint troublesome assets, this is the first (to the best of
the authors knowledge) real-world implementation of a data-driven algorithm able to ac-
curately (within ±5%) keep tabs on long-term DEL (and therefore, fatigue damage). As
discussed in [1], a ±5%, long-term DEL error compares favourably to current industry
standards.
Translated to an industry-friendly tool, this algorithm could allow operators to track fa-
tigue progression on their farm(s) throughout the years and serve as a springboard for
further decision-making.

CONCLUDING REMARKS AND FUTURE STEPS

This contribution has offered a first view into the real-world implementation of a data-
driven physics-guided machine learning model for tower fore-aft and side-to-side long-
term DEL estimation based on SCADA and acceleration data. The overall methodology
was explained, with a particular focus on the distinction between a fleet-leader and a
population-based philosophies. In the results section it was seen how the long-term er-
ror both for fore-aft and side-to-side can be kept well below ±5%, without loosing ten-
minute level accuracy. Unprecedented in its scale, this exercise is the practical culmina-
tion of preceding proof-of-concept works, and can be seen as pointing towards a practice
that will become more prevalent over the years in SHM for wind turbines: farm-wide
accelerometer installation at nacelle-level in order to keep tabs of the fatigue progression
for every turbine within the farm. Work that ought to be short-term presented includes
the further assessment of physical meaning of the trained models by analysing outlier be-
haviour and performance under different operating conditions, along with the leveraging
of these models’ outputs for specific exercises.
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