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ABSTRACT

Ice accretion on wind turbines poses a significant safety risk, especially in
densely populated areas. Ice built up on the blades can be thrown towards people and
infrastructure and cause potential damage and harm. This risk is known and, as such,
several solutions exist in today’s market to detect ice accretion on the blades and
timely shut down the system. The industry consensus is that icing detection systems
installed directly on the blades offer more reliable detection. However, (post-)
installation of hardware on the blades poses some practical limitations, impacting
the overall cost and maintainability. To complement existing technology this study
proposes monitoring the whirling modes, which are the natural frequencies
associated with the wind turbine rotor, through a sensitive accelerometer mounted
on the tower. The working principles rely on the concept that the increase of mass
due to ice will lower the natural frequencies of the rotor. Observing this phenomenon
from the tower implies a similar working principle as some blade mounted systems,
while having a sensor installed on the tower simplifies installation and maintenance.
Utilizing SHM data from tower, an ice indicator was made during standstill and
operation which provided a proof of concept for this method.

INTRODUCTION

Wind turbines are a popular source of renewable energy, with large-scale projects
being implemented worldwide to combat climate change. Wind energy is highly
dependent on environmental conditions and with it come many challenges. A
particular phenomenon encountered in cold regions is the icing on the blades of wind
turbines [1]. Icing accretion on the blades affects the aerodynamic shape of blades
resulting in power losses [1]. Moreover, the uneven shape of the ice-covered blades
can generate noise and vibrations which contribute to fatigue and increased lifetime
consumption. Icing can also impose safety risks towards nearby inhabitants as ice
can be thrown towards people and infrastructure, particularly in densely populated
areas. In Europe the severity and occurrence vary strongly between regions which is
presented in [1]. Therefore, multiple market solutions that aim to mitigate its impact
already exist.
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Given the different severity and occurrence as well as the built environment, the
way icing is handled differs between countries. For instance, for Scandinavian
countries such as Norway icing is a long-term issue with icing period lasting more
than 30 days per year in often remote areas. As such, the main concern is the power
losses associated with rotor icing rather than safety. As icing equates to loss of
efficiency and therefore loss of revenue, blade heating solutions are a viable measure
against icing even despite their cost of operation. On the other hand, for countries
such as Belgium rotor icing is a short-term problem, and therefore the power losses
are minimal. For densely populated countries with short icing periods, safety from
the ice thrown is the main priority. In general very conservative ice-prevention
strategies are adopted, shutting down the machine when weather conditions have an
elevated risk of ice formation. The machine is only restarted when a visual (on-site)
inspection confirms the absence of ice. As icing is rare, this scenario only plays out
a few times every winter, making high-end icing detection or blade heating too
expensive compared to the gained revenue. While conservative, the strategy is not
flawless, fluke weather conditions and ill-judgement during the visual inspection
may still result in the turbine operating with ice.

In this contribution, the aim is develop an ice detection solution that is more cost-
effective than existing solutions on today’s market. It aims to re-use the Structural
Health Monitoring hardware used for other purposes, such as fatigue assessment.
Simultaneously it does not rely on hardware inside the blades, or the outside of the
wind turbine. Facilitating installation and maintenance of the device.

STATE-OF-THE-ART ON ICING DETECTION

The current state-of-the-art methods can be classified into two groups, nacelle-
based systems, and rotor-based systems which are presented in [2]. The icing
detection systems on nacelle-based systems working principle relies on assessing the
meteorological conditions (such as measuring the temperature and humidity) and
inferring the likelihood of rotor icing. While on the hand, the rotor-based systems
deploy sensors directly on the rotor and detect icing via impedance or resonance
frequency deviation. The resonance frequency method is the most common rotor-
based method found in [2]. Their working principle relies on the concept that the ice
mass formed on the blades will decrease the natural frequency. Thus, ice is detected
by identifying a drop in the resonance frequencies. Similarly, as ice melts or falls off
the blades, the mass decreases and the frequencies return to their nominal values
allowing the turbine to be restarted in case of safety shutdown. In particular,
monitoring the rotor modes are of interest as in theory they are the most sensitive to
icing. The rotor frequency-based systems that are commercially available are
Fosdice, IDD.Blade (also known as Wolfel SHM.Blade), Bosch Rexroth blade
control [2]. Since the frequencies measured are dependent on Environmental and
Operating Conditions (EOC), these systems need to compensate for these
variabilities. The idea is to model the EOC effects and compute the residual between
the predicted resonance frequencies (given the current environmental conditions)
and those observed, this residual would be evaluated to assess icing. All of the



aforementioned systems install sensors as close to the tip of the rotor as possible.
This could impose operation constraints as replacing the sensors is challenging,
moreover concerns such as lightning and power transfer into the blade need to be
resolved.

As an alternative, this paper purposed building on the work of [3], by
investigating both feasibility of monitoring the whirling modes from the tower and
the ability of detecting icing using those rotor modes during operation and standstill.
This offers a cost-effective method to detect icing by lowering the complexity and
maintainability of sensors. However, when rotor modes are observed from the tower
they show rotor speed dependency, hence often refer to as “whirling modes”. With
the forward whirling mode increases with rotorspeed, while the backward whirling
modes decreases. According to [4] simulation results, with only 2% additional mass
the whirling modes frequencies can drop up to 5%. . Moreover, the method is
coupled with machine learning techniques to compensate for natural variabilities in
the measurements. Like the aforementioned frequency monitoring systems, the EOC
variability is modelled and then removed allowing the assessment to focus on
structural changes.

METHODOLOGY

This study was implemented on data obtained from an operational wind turbine
in the Amel wind farm which is located in Liége, Belgium. The data provided by
OWI-lab contained the Model Parameter Estimation (MPE) which is collected
through a SHM sensor installed in the tower of the wind turbine along with the
turbine SCADA parameters (such as pitch, rotor speed, etc.). The MPE is obtained
through Operational Model analysis where the structure is assumed to be excited by
white noise (natural vibrations) and the output is recorded. Using this process
parameters such as frequency and damping are estimated which then can be used for
structural health monitoring applications, more about the process can be found in [5].
The time period recorded is from the 7th of December 2020 until the 30" of March
2021. Moreover, meteorological data was obtained through the Royal
Meteorological institute of Belgium. In Figure 1 the frequencies measured are
plotted against the rotor speed to produce a so-called Campbell diagram. The
Campbell diagram is a relevant plot as it shows the different types of modes captured
by the SHM system. The different of modes captured can be summarized as:

e Rotor harmonics: multiples of the rotor speed frequencies 1p, 3p, 6p, 9p
(black dashed lines).

e Structural modes: mostly dependent on mass and stiffness of the structure
such as the first side-side natural frequency (SS1), independent of the rotor
speed (black bold line)

e Whirling modes: rotor modes which are dependent on mass, stiffness of the
rotor and the rotor speed (orange lines).
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Figure 1 Campbell diagram in the side-side direction, showing the observed resonance
frequencies with the SHM system.

To develop an ice indicator for wind turbines, it is essential to focus on
frequencies that are sensitive towards icing such as the whirling modes. However,
there is a significant difference between the operating conditions of a turbine during
parked and operation. For instance, during parked conditions, the rotor speed
influences disappear on those modes, hence these modes depend solely on
environmental factors. In contrast, during operation, the harmonic and the rotor
speed effect come into play. Since the behavior of the rotor modes differ depending
on the operating state, a single model is not sufficient to detect icing in these two
states. Therefore, the data was divided accordingly so an ice indicator can be built
for each parked and operational conditions. The environmental variabilities on both
data must be compensated so that the study would be limited to structural changes
such as ice forming on the blade. The final stage of making an ice indicator is
anomaly detection. Rotor icing is considered as anomaly since it is not present in the
data during nominal conditions. Hence, to detect icing is to detect points that lie
outside the normal distribution of the normalized data. The ice indicator used in this
study is the Mahalanobis distance which is given by the following equation (1).

D2 =(x—2)T xC1x (x —%) (1)

With D being the Mahalanobis distance, (x — X) is the variation of the modes
from their mean and C is the covariance matrix [6].The Mahalanobis distance is a
statistical measure used to assess the similarity/dissimilarity between points in a
multivariate dataset. It considers the correlation between variables via the covariance
matrix, which makes it a useful tool to identify outliers. In theory, ice build-up will



affect multiple modes, and hence a high Mahalanobis distance will be computed as
anomalies will be found across different modes. The Mahalanobis distance squared
follows a chi-square distribution, and a typical practice is to select the threshold for
outliers as being between the 95" and 99" percentile of the distribution.

PARKED CONDITIONS

The parked data is obtained by focusing on data with low rotor speed (rpm<1).
The emphasis was on measurement points with sufficient wind speed (above 3m/s)
to excite the natural frequencies captured. Furthermore, to ensure that physical
modes are captured, the analysis was limited to frequencies below 6 Hz and damping
values below 10%. The modes were then tracked by specifying a certain threshold
away from the frequency of interest, typically 5%. Overall, 12 modes were tracked
for each the Fore-aft and Side-Side.

During standstill, the whirling modes will appear at slightly different frequency
compared to operation case especially with the effect of rotor speed disappearing.
Hence, the emphasis was on using the tracked standstill modes that are close to the
whirling modes frequency band (1.25 Hz and 3.8 Hz) for the ice indicator. Structural
modes are less sensitive to icing; hence they could reduce the performance of the ice
indicator. Thus, they are not used to calculate the Mahalanobis distance. As data was
sufficiently small to apply any advanced normalizing techniques, the correlation
matrix, a linear correlation between influencing parameters (i.e. SCADA and
temperature) and the frequencies, was used to check the influence of EOC on modes.
Overall, it was established that the correlation with EOC was weak and the
Mahalanobis distance can be applied directly without any further normalization
process. The ice indicator using the Mahalanobis distance during parked conditions
Is shown in Figure 2.

As shown in Figure 2, a period stood out (27" of January) with few points
crossing the assigned threshold. The outliers found were the points with the lowest
frequency during this period. Observing the behavior of the modes in this period, it
was found the frequencies were increasing back to nominal values. This was seen
across both structural modes and the standstill rotor modes. Moreover, this occurred
during low temperatures which is suited for icing conditions. The frequency might
be returning to the nominal values after the ice started to melt or fall off the rotor.
This behavior is important to detect as the operation can be resumed once the
frequencies are back to nominal values. This period can be investigated during
operating conditions to infer what might have occurred leading up to parked
conditions. What is expected to be seen is that the frequencies decreased leading up
to shut down due to the addition mass of ice forming on the blades.
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Figure 2 Ice indicator built using the Mahalanobis distance during standstill (Red dash line)
threshold set using 97.5™ percentile of the distribution (Red dots) outliers.

OPERATING CONDITONS

In operation state, the objective is to detect ice accretion on the blades, and hence
a frequency decrease so a safety shutdown can be performed. However, to make an
ice indicator similar to parked conditions, the whirling modes must be tracked first.
However, during operation, the whirling is also dependent on the rotor speed and a
simple fixed boundaries tracking is not sufficient to capture those modes. In [7] , it
is assumed that the whirling modes vary linearly with the rotor speed at a rate of 1p
via the following equations:

fbw,fw = fw + rpm/60 2

In practice, the variation of the whirling modes is not a linear behavior as other
influencing factors can come to play such as the EOC effects. Nonetheless, using
those equations it is possible to isolate the frequency of interest. Fitting the bi-linear
model found in equation (2), frequencies within 5% tolerance away from the model
are captured. Even though the linear assumption is not ideal, the whirling modes are
still captured sufficiently. The data now can undergo a normalization process.

To normalize the data, random forest regressors are used to predict the influence
of the EOC. Some parameters required normalization before feeding it to the
algorithm such as the yaw angle. The yaw angle varies from 0 to 360 degrees;
however, without normalization the algorithm would not consider 360 and 0 as
successive angles. To deal with this, the cosine and sine of the yaw angle are used
instead. Moreover, some feature engineering was introduced to link some parameters
to each other. Feature engineering is the process of feeding a nondimensional
parameter that links different features to each other to aid the algorithm in learning
the relationship between the different features more efficiently. In the case of wind
turbines, the feature engineering parameters that are used are the capacity factor and



the tip speed ratio. TABLE | summarizes the input and output of the algorithm used
to normalized the data. The flap wise modes are associated with the direction
perpendicular to airflow, while the edge wise modes are parallel to airflow.

TABLE | RANDOM FOREST REGRESSOR INPUTS AND OUTPUTS

Features (Symbol, unit) Feature Engineering (unitless) Variables to
predict (unit)

e Yaw (9,°) e  Tip speed ratio e  Edgewise

e  Pitch (3,°) TSR = Radius X w whirling

e Wind speed (v, m/s) v modes (Hz)

e Rotational Capacity factor e  Flap-wise
speed (w, rad/s) ¢, = P whirling

e Temperature (T,°C) 05xv3xpxA modes (Hz)

o Power (P, W) e sin@,cos®

e Density (p, kg/m3)

The data was split into three datasets: training, validation, and testing, with a
corresponding size of 61%, 14% and 25%, respectively. The training was carried out
during February and March. The validation dataset was used to tune the model before
using it on testing dataset. The testing dataset was the month of January as it is a
period with lowest temperatures, and hence has the highest chance of icing occurring
within it. Moreover, it is of interest to investigate the period found in the pervious
section, 27" of January, to analysis what occurred leading up to shut down.
Subtracting the model from the measurements and evaluating the residual using the
Mahalanobis distance, the ice indicator found in Figure 3 is constructed. At the
beginning of January, the Mahalanobis distance gradually increased until it reached
the assigned threshold with a clear bump observed in Figure 3. Zooming in on the
(1) and (2), a frequency drop occurred during the night of (1) which then propagated
into the (2). Moreover, during (2) the normalized frequency was below the nominal
values throughout the day with the alarm triggered during the morning and during
the evening. This might indicate a light icing period as the frequencies decreased;
Nonetheless, no shutdown occurred during those periods.

On the other hand, the (3) was a very clear outlier period with a very high
Mahalanobis distance. Looking at (3), it could be seen that the frequency was
gradually decreasing until a shutdown occurred. This coincides with the parked
condition results where the frequencies were recovering after the shutdown during
the 27" of January. What can be inferred is that ice builds up on the blades leading
up to a shut down by the operator. Then as was found in pervious section (PARKED
CONDITIONS), once the turbine was shut down, ice started falling off or melting
down of the blades leading to reduction of mass and increase of frequency. Thus,
this demonstrates that it is feasible to detect icing using measurements from the tower
in both operating states.
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Figure 3 (Upper) Normalized frequency of points that crossed the threshold (Red) outlier zone
(Lower) Ice indicator built using the Mahalanobis distance (Red dash line) threshold set using 99.9"
percentile of the distribution (Red dots) outliers. (1) 04/01/2021 (2) 05/01/2021 (3) 27/01/2021.

CONCLUSION

The research has demonstrated the use of rotor modes observed from the tower
to detect icing. This technique offers a cost-effective solution due to its installation
and the ease of sensor replacement compared to similar technologies which rely on
sensors installed in the rotor. This could potentially provide an economical solution
to reduce the risk of ice thrown towards inhabitants in densely populated areas with
low icing occurrence. This method showed its ability to detect icing during both
parked and operating conditions. The ice indicator was realized through normalizing
the EOC effects and evaluating the residual via computing the Mahalanobis distance.
Future research is investigating the feasibility of using the same trained model across
multiple turbines.
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