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ABSTRACT 
 

Modal analysis is one of the elementary tools for the analysis of structural dynamics. 
In context of vibration-based damage diagnosis and continuous monitoring of modal 
quantities, different variants of Operational Modal Analysis (OMA) were developed. In 
most cases, the results of the analysis (modal data) are improved by post-processing 
methods, e.g., by clustering of stable poles in stability diagrams. The aim of this paper 
is to facilitate the automatic interpretability of the computational results by pre- 
processing techniques. The method presented in this paper is used to distinguish 
between the physical poles and the unwanted mathematical poles to determine the 
natural frequencies more accurately. This is necessary because for the monitoring of 
complex real structures, high model orders are required, leading to the occurrence of 
mathematical poles. To enable a reliable separation, the spectral signal components are 
analyzed regarding their information content and their energy level in a specific 
frequency band. For this purpose, the widespread assumption is used that the largest 
singular values of the system response are related to the highest signal energy and that 
the lower singular values are caused by noise. With the use of different narrow 
frequency bands (e.g., by using bandpass filters), the estimation of an accurate threshold 
between noise and eigenfrequencies can be well established for each band. This 
technique is applied on the Covariance-Driven Stochastic Subspace Identification 
algorithm (SSI-COV) for OMA. In context of SSI-COV the Singular Value 
Decomposition (SVD) and the estimated threshold is used to build reduced and 
reassembled Hankel matrices from partial sum matrices for each frequency band 
separately. The advantage of the reduced matrices is that only physical poles have 
plausible modal damping values, and these can be well separate from mathematical 
poles. The effectiveness of the method is first demonstrated on simulated data and then 
successfully tested on a laboratory structure. The results, the advantages, and limitations 
of the method as well as the need for further improvements are discussed. 
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INTRODUCTION 
 
The OMA is a widely used method for system identification in the area of Structural 

Health Monitoring (SHM) [1]. It can identify eigenfrequencies of a structure, the 
corresponding damping values and mode shapes. There are different techniques which 
can be used for the estimation of the wanted parameters, e.g. SSI-Data, Peak-Picking or 
Polymax to name some. Each of them has its own advantages and disadvantages [2]. 
This paper only deals with the SSI-COV algorithm. The approach in this work was 
developed as part of an automated OMA to be used in SHM context [3,4]. The 
underlying idea is to facilitate the separation of mathematical poles from 
eigenfrequencies in such a way that the effort and the complexity of post-processing 
methods for the interpretation of OMA results can be reduced. Therefore, the well-
known gap-method is modified and applied to estimate the required model order only 
for narrow frequency bands [5]. Due to the use of narrow frequency bands, which rarely 
contain more than one or two eigenfrequencies, the determination of the necessary order 
is simplified. All narrow frequency bands together cover the whole frequency spectrum. 
The defined model order is then used to build a reduced and reassembled Hankel matrix 
from partial sum matrices for each frequency band separately. The results calculated in 
this way together with the application of hard criteria (e.g., limitation for permissible 
attenuation values) only contain physical modes. The procedure is first tested as an 
example on simulated data and then, for reasons of space, only applied to a damage 
mode of a laboratory setup.  

 
FUNDAMENTALS OF SSI-COV 

 
The following chapter gives a brief overview of the SSI-COV algorithm so that the 
effects of the herein proposed method can be better comprehended. A detailed 
explanation can be found in the publication of Rainieri and Fabbrochino [6]. The 
algorithm belongs to the output-only methods for linear system identification, originally 
based on the eigenvalue realization algorithm designed for known impulse excitation. 
[7] In case of SSI-COV the structure response is “modeled” as a state-space model and 
the unknown excitation is assumed to be uniformly distributed white noise. In practice 
the amplitude or excitation distribution is unknown, which means that modes in various 
frequency bands can be stimulated differently. That can make a reliable system 
identification quite difficult especially when considering a wide frequency range with 
different excited modes. The core of SSI-COV is the construction of the output 
covariance matrix in block Hankel structure Eq. (1), which contains the results of the 
cross and auto covariance functions between the sensor signals Eq. (2). The variables 
𝛽𝛽�,ᾶ from Eq (1) correspond to the maximum number of time steps of the correlation 
function. The variable nt corresponds to the number of data points in one signal of the 
simultaneously measured m-variate time series y of the dimension [m, nt]. This leads to 
a covariance matrix Ȓi of dimension [m, m].   
 

(Hα,β)0
= 

⎣
⎢
⎢
⎢
⎡ CyG CyAdG ⋯ CyAd

β-1G

CyAdG CyAd
2G … CyAd

βG
⋮ ⋮ ⋱ ⋮

CyAd
α-1G CyAd

αG … CyAd
α+β-2G⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡Ȓ1 Ȓ2 ⋯ Ȓ𝛽𝛽�

Ȓ2 Ȓ3 ⋯ Ȓ1+𝛽𝛽�

⋮ ⋮ ⋱ ⋮
Ȓᾶ Ȓ1+ᾶ ⋯ Ȓᾶ+𝛽𝛽�−1⎦

⎥
⎥
⎥
⎤
  (1) 



 

  

Ȓi= 
1

nt-i-1
   y(1:nt-i+1)⋅y(1:nt)

T  (2) 
 

 
For further calculation steps it is necessary to decompose the [m ∙ ᾶ, m ∙ 𝛽𝛽�] Hankel 
matrix (Ho) into two orthogonal matrices U and V and a diagonal matrix S by means of 
SVD, see Eq. (3).  
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(3) 

The dimension of the Hankel matrix determines the maximum model order and has a 
significant influence on the calculation of the physical poles. Weakly excited modes can 
only be detected by a higher model order and consequently a high dimensional Hankel 
matrix. The drawback is then that the stability diagram will also contain more spurious 
or mathematical poles. The system matrix Ad can now be obtained by Eq. (4) 
 

 Ad= Sp
-1/2 ⋅ Up ⋅ H1 ⋅ Vp ⋅ Sp

-1/2 (4) 
 
 
LOW RANK APPROXIMATION OF HANKEL MATRIX 
 

A simulated system with n degrees of freedom has n eigenfrequencies. These 
eigenfrequencies are distributed over an arbitrarily large frequency range. The modal 
analysis can be used to identify these eigenfrequencies within the analyzed frequency 
range. Each eigenfrequency corresponds to two singular values in the singular value 
matrix S. Due to lack of space, the new approach is explained by means of an example. 
Figure 1 shows a simulated three degree of freedom system (3-DOF System). For this 
system we expect to see three natural frequencies and therefore six dominant singular 
values. These singular values should be clearly distinguishable from the remaining 
singular values, which are caused by a too high model order or measurement noise. In 
Figure 2, the singular value plot of the first 15 singular values is shown for the 3-DOF 
System with an unusually high number of timeshifts (300). It is easy to see that despite 
the possibility of 900 singular values, 99% of the total energy is covered by the first 6 
singular values. The remaining singular values contain less than 1% of energy and can 
therefore be omitted.  

 
 

 

Figure 1. 3-DOF Mass-spring-damper model 
 



 

 

 
Figure 2. Singular value curve of 3DOF-System 

 
 

 According to the literature or the commonly known SSI-COV algorithm, a model 
order of p = 6 would now be selected to calculate the Ad matrix Eq. (4) p times. In this 
approach however, a new reference matrix H1rec is first built from the partial sum of p 
rank one matrices, as shown in Eq. (5). All further singular values greater than p are 
ignored. The use of partial sums of rank one matrices is often applied in the context of 
signal denoising or image compression [8–11].  
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The advantage of this method is that the high computational order, typically required 

for the Ad matrix to determine weakly excited modes, can be maintained, and 
mathematical poles no longer have a significant impact on the interpretation of the 
stability diagram or modal parameters. Through the low-rank approximation, only the 
significant information of the natural frequencies remains in the H1rec matrix. The H0 
matrix is not changed, so it still contains all the information. The procedure for 
calculation of the system matrix Ad with Eq. (4) remains unchanged. Figure 3, left, 
shows the poles calculated using the regular method, while Figure 3, right, shows the 
poles obtained using the low-rank approximation with six singular values. In the regular 
method, most of the mathematical poles are located within a plausible damping range 
and may therefore appear as stable or physical poles (occurrence in multiple orders, low 
frequency-damping deviation). In this approach based on the low-rank approximation, 
mathematical poles still occur, but they are much more random in terms of their 
frequency distribution. Additionally, the modal damping of these mathematical poles is 
close to 100%. These poles can be easily removed by means of a simple damping 
criterion, e.g. removing poles with damping greater than 10%. 
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Figure 3. Regular calculation (left), modified approach without damping 

criteria (right) 
 
 

APPLICATION TO MEASUREMENT DATA OF A LABORATORY 
DEMONSTRATOR 

 
 
One weakness of the presented method is the determination of the correct model 

order based on the singular value decay. While this is easy for simulated data with low 
noise, it is not easily achievable for a real system with many eigenfrequencies and 
disturbances. In the following, the method is applied to measurement data of a 
laboratory structure that was created as part of research project In-Situ WIND. The 
structure serves as a replica of the so-called grout connection in offshore structures, such 
as those used for connecting foundation structures and superstructures in windturbines. 
To test different SHM approaches in presence of different induced damage stages, the 
structure is gradually loaded with hydraulic cylinders. The structural response is 
recorded using four acceleration sensors, which are mounted in the load direction. The 
measurements are taken between load levels using an electromechanical shaker to excite 
the demonstrator with different forms of excitation (noise, sweep, etc.). The frequency 
range of the excitation is relatively high (up to 1000 Hz), which can excite numerous 
modes. Since a clear model order cannot or only poorly be determined based on the 
singular value decay, modal analysis is selectively performed in this case. This means 
that the frequency range of interest from 0 to 1000 Hz is divided into many narrow 
frequency bands using a bandpass filter, for which an individual low order p for the low 
rank approximation is determined, see Figure (5). Due to lack of space only one specific 
frequency band is used, to show the effectiveness of the proposed method. To obtain 
the results for other modes, different bandpass frequencies or sliding windows over the 
frequency band, must be used. In the following, for illustration we only consider one 
mode which allowed us to detect a degradation of the test stand in an early stage and 
after running various load programs. For this purpose, the acceleration signals are first 
filtered using a bandpass filter before these are used for the estimation of modal 
parameters. The passband frequency here is 225 Hz up to 270 Hz (vertical red dashed 
lines) in Figure 4. 

 
 



 

 
 

Figure 4. Power Spectral Density over the whole frequency band.   
(Vertical red dashed lines –bandpass frequency) 

 

 
Figure 5. Singular values (left) and stability diagram with marked stable poles 

(right) 
 
 

According to Figure 5 (left), the analysis of the singular value plot shows two 
relevant singular values of the filtered frequency band shown in Figure 6 (right). 
Therefore, there is only one corresponding mode in this frequency range, which can be 
represented by the low rank approximation with p = 2 according to Eq. (5) for the H1rec 
matrix. By using the newly constructed Hankel matrix H1rec and the mentioned hard 
damping criterion, all remaining mathematical poles are removed, leaving only the 
relevant poles of the natural frequency in the chosen band. The remaining poles are 
marked as blue dots in Figure 5 (right). With these determined parameters, all further 
data sets, which were recorded after each hydraulic load level, during the shaker 
excitation, are calculated and compared with the previous one. 
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TABLE I EVALUATION OF THE MODAL ANALYSIS OF DAMAGE MODE 

 
 
 

According to the results of the modal analysis as given in Table I, a clear reduction 
in the natural frequency and an increase in damping can be observed, indicating a loss 
of stiffness and damage to the structure. Based on these findings, it was determined that 
the degradation of the grout connection had already occurred after the first load level. 
No plastic deformation was observed in the steel components, suggesting that the 
damage was confined to the grout material itself. The suspicion was confirmed as the 
load level was increased, with the appearance of cracks in the grout joint and water from 
the inner pipe being forced upward due to a yet undetermined effect. The residual load-
bearing capacity is still sufficient, a lowering of the inner pipe could not be observed. 
 
 
CONCLUSION - LIMITATIOS AND ADVANTAGES OF THE CHOSEN 
APPROACH AND PERSPECTIVES FOR FURTHER RESEARCH 

 
The presented approach refers to the use of a low rank approximation of the Hankel 

matrix H1rec to separate mathematical poles from physical poles when dealing with 
modal analysis. This method has been successfully tested both on simulated and 
experimental data. However, one of the main limitations of this approach is that it can 
be challenging to determine the unique model order for the entire frequency range. To 
overcome this issue, the whole frequency range is divided into several narrowband 
regions, and the model order is determined based on the singular value decay in each 
range. The novelty of this approach is that it allows a clear identification of the 
eigenfrequencies in each frequency band, without additional post-processing methods 
such as clustering, also the determination of calculation parameters is simplified. 
However, this approach requires multiple calculations of modal parameters, leading to 
increased computation time. The modified modal analysis algorithm is particularly 
suitable for tracking a specific vibration mode explicitly. This can be useful in various 
fields where it is essential to detect and track changes in structural behavior over time. 
Additionally, this approach could be applied to other areas such as automotive, 

Date Load level Frequency in [Hz]
Difference to 

previous 
experiment [Hz]

Damping in [%]

Difference 
to 

previous 
experiment 

[%]

31.10.2022 Reference 260,41 - 0,5 -

03.11.2022
Initial 

commissioning
10 %

258,46 -1,95 0,52 0,02

16.11.2022 5 Hours 
10 % 254,43 -4,03 1,02 0,5

18.11.2022 5 Hours 
20 % 251,72 -2,71 1,37 0,35

22.11.2022 5 Hours 
40 % 247,59 -4,13 2,93 1,56



 

aerospace, and civil engineering, where modal analysis is a crucial tool for 
understanding the dynamic behavior of structures and systems. 
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