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ABSTRACT

Wind energy plays a prominent role in Germany to achieve the climate targets. Ac-
cording to the "Wind-an-Land-Gesetz” (literally: "Wind on Land Act”), which has just
come into force, the area used for onshore wind energy in Germany should be more than
doubled from the current 0.8% to 2% until 2032.

Rotor blades are one of the most significant cost factors of a wind turbine. They
contribute with about 30% to the plant costs. By means of continuous monitoring of
their structural integrity, it would be possible to reduce downtime and maintenance costs.
This approach of “structural health monitoring” (SHM) with FMCW-radar systems has
already been tested in the laboratory.

In this contribution, we describe and demonstrate an SHM system for radar-based
monitoring of rotor blades at two operational wind turbines. For this purpose, a sensor
box with a 35 GHz radar sensor (1 000 measurements per second) and a camera sys-
tem (100 images per second), is mounted on each wind turbine tower at approximately
100 m height. In order to distinguish individual rotor blades, a machine-readable marker
printed on a self-adhesive film was applied on the blade’s surface. When a rotor blade
passes the sensor, the camera captures an image of the marker while the radar records a
measurement. The marker is then identified and the recorded data is assigned to a par-
ticular rotor blade. The ultimate goal is to detect damage-induced changes in the radar
characteristic of the blades.

By end of April, over 260 000 rotor blade passes had already been recorded. The
data set will be discussed in the paper. Images from the FMCW-radar are classified by
the rotor blade label using a convolutional neural network (CNN). Early test results for a
subset already show an f1-score of 0.886 and 0.923 for each rotor blade of the evaluated
wind turbine.
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INTRODUCTION

Operation and maintenance accounts for 33.6% of the levelized cost of electricity
for onshore wind projects on average over 25 years. This includes in particular the ro-
tor blades, which account for around 30% of the capital expenditure (CapEx) of a wind
turbine [[1]. Currently, wind turbine rotors are mainly visually inspected for damage
at regular intervals. Continuous monitoring using Structural Health Monitoring (SHM)
techniques could allow maintenance intervals to be adjusted as needed, thus saving costs.
In recent years, SHM using FMCW radar has been investigated for blade damage detec-
tion. It has already been demonstrated in the laboratory that damage can be detected
using a 35 GHz FMCW radar [2]]. Radar sensors can also be used for SHM applications
in the 60 GHz band as demonstrated on coupon level [3]] and during a recent full-scale
fatigue test using a 31m long wind turbine blade [4].

Since damage detection generally requires a reference measurement from intact struc-
tural conditions, it is necessary to know to which rotor blade a specific measurement
belongs. It will be investigated whether it is possible to assign blades based on radar
data alone, but the development of such algorithms requires the availability of labelled
training data. To obtain this, machine-readable codes were applied to the rotor blades.
Each time a rotor blade passes by, a camera records a short video. This allows each mea-
surement to be assigned to a rotor blade. In addition to video and radar data, information
from the turbine control system, such as wind direction, wind speed and blade pitch, is
also recorded. These parameters have an influence on the radar measurement and can
affect the comparability of a measurement with a reference. The possibility of elimi-
nating the need to access the turbine control system in the future is being investigated.
The ultimate goal of the research project is to develop a system that can detect damage
based on the radar data and support future customers in their decision making. To this
end, a new 35 GHz multichannel FMCW radar sensor has been developed. The use of
multiple channels could also enable other functions besides damage detection, such as
the detection of ice on rotor blades.

Recent works on structural health monitoring of wind turbines using deep learning
methods focused on optical images of damaged rotor blades taken by UAVs for non-
operating turbines. Applied convolutional neural networks (CNNs) range from regular
image classifiers [5,/6] to bounding box detectors [7,[8] that locate potential areas of
damage. Optical images give only information about the turbine blade surface and are
highly sensitive to daylight exposure. The usage of UAVs usually limits the evaluation
to non-operating turbines. Insights from this work provide a foundation for a reliable
and automatic monitoring system for operating wind turbines with FMCW radar data.

The remainder of the paper is organized as follows: First, an overview of the mea-
surement system and the measurement procedure is given. Subsequently, the data sets
already gathered are explored and discussed. Based on this, first evaluation attempts
for radar-based rotor blade discrimination are presented. Finally, the further outlook is
presented.



Figure 1. The sensor unit on the tower (left) and a rotor blade with barcode (right top)
and Al marker (right bottom).
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Figure 2. An overview of the radargrams of different rotor blade passes from the same
wind turbine. A clear influence of the wind-turbine parameters can be seen. The color
axis applies to all three radargrams.

STRUCTURE OF THE MEASURING SYSTEM

A measuring system will be mounted on each of three wind turbines at about 90 m
height. As of early May 2023, two systems were already operational. Each measurement
system consists of two different units, one mounted on the outside of the wind turbine
tower and one unit inside the tower on a platform, as well as different markers on each
rotor blade. The unit mounted outside the wind turbine is referred to as the sensor unit,
and the unit mounted inside the wind turbine is referred to as the supply unit. Classical
barcodes as well as markers for video-based Al-supported differentiation were applied
to the rotor blades (see Figure I)).

The sensor unit consists of a box containing the radar sensor, a Raspberry P1 HQ
camera, a Raspberry Pi 4B single board computer with an external SSD for data storage
and a Power over Ethernet (PoE) splitter. The unit is mounted in such a way that the
radar sensor covers the main wind direction. This ensures that the rotor blades are in
view most of the time. The camera lens was chosen to cover a similar area.

A measurement is triggered by the radar using a threshold value. As soon as the
radar detects a rotor blade in the detection area, the radar data (see Figure |Z|) as well as
a short video and various metadata are automatically stored.
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Figure 3. Data flow from the sensors to the server in Frankfurt.

The supply unit consists of a Raspberry Pi Zero single board computer which con-
trols a relais. The relais controls the power supply of a PoE injector. The PoE injector
delivers power and ethernet to the outer unit. The supply unit is connected to the wind
farm network via a fiber optic cable leading to the tower base.

To collect data from all three systems, a computer is installed on site with access
to the wind farms network and the research network used by Goethe University. This
computer also receives data from the plant control system, such as wind speed or pitch
angle of the rotor blades (see Figure [3).

The collected data is then transferred as a whole to a server in Frankfurt, where some
pre-processing steps are performed. These steps mainly include the assignment of the
measurement to a particular rotor blade by means of barcode recognition. In addition,
the measurements are merged with the corresponding data from the plant control system.

DATA SET AND PRELIMINARY ANALYSIS

By the end of April 2023, more than 260 000 rotor blade passes had been recorded on
the two turbines with the measurement system installed. In addition to the radar data (see
Figure [2), a measurement consists of a video and various metadata. This includes the
turbine control data and the settings with which the measurement system was operated.

The radar can detect the rotor blade for a nacelle orientation from 190° to 300°. This
means a large azimuthal coverage of about 110° (see Figure da). The temperature range
of the recorded data is from about -5 °C to just below 20 °C (see Figure db). The wind
speeds in the data set range from no wind to over 25 m/s, although these speeds are
rare and barely visible in the figure (see Figure dc). The recorded measurements also
cover the full range of the pitch angles that range from -6.7° to 47.6° with a few samples
between 71° and 78°. Unfortunately, we do not have a precipitation sensor available, so
this data would have to be obtained later from other sources if necessary.

One sample contains a total of 44 metadata entries. Not all of these metadata are
directly useful for analysis, some are only used to track possible errors. An example



Measurements by Nacelle Orientation
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(a) Histogram of measurements by nacelle orientation. Since it contributes to the angle
of the rotor blade relative to the radar, it will have a significant impact on the radargram
and thus on further analysis. Both radar systems are mounted at approx. 230°.

Measurements by Ambient Temperature
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(b) Histogram of measurements by ambient temperature. The ambient temperature
affects the rotor blade itself. Due to thermal expansion, the radar measurements differ
at different temperatures.

Measurements by Wind Speed
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(c) Histogram of measurements by wind speed. Wind speed is the main factor affecting
the speed of the wind turbine. Thus, it determines how long the rotor blades are in front
of the radar.

Figure 4. An overview over different metadata parameters.



TABLE I. RADAR-BASED ROTOR BLADE CLASSIFICATION.

Class f1-score (train) f1-score (val) f1-score (test)
ROT1 0.987 0.920 0.911
ROT2 0.984 0.892 0.886
ROT3 0.987 0.918 0.923

would be the version of the measurement software. It is only stored to identify the
affected part of the data set in case of a software malfunction.

It is also possible that some entries contain the same information or at least correlate.
An example would be the nacelle orientation and the wind direction. In general, they
should at least be similar. Therefore, it is necessary to find out which metadata is really
relevant for the analysis.

RADAR-BASED ROTOR BLADE CLASSIFICATION

For the first test of a radar-based blade classification using a neural network, only
a subset of the complete data set was used. In the period from October 21st, 2022
to March 31st, 2023, a total of 104 000 verified samples consisting of corresponding
radargrams, labels and metadata were processed for turbine 1. For turbine 2, a total of
70000 samples were extracted for the period from December 15, 2022 through Febru-
ary 25, 2023. The labels assigned by barcode recognition are assumed to be correct. This
enables the application of supervised learning models. In the scope of this project, a sim-
ple convolutional neural network (CNN) was designed to classify a given rotor blade by
a corresponding radargram. The CNN is defined by three consecutive convolution lay-
ers with intermediate batch normalization, rectified linear unit (ReLU) and max-pooling
which are followed by two fully connected layers with an intermediate ReLLU.

With the intention of reducing uncertainty in the model optimization, several meta-
data were integrated into the CNN. Included values are the outside temperature, wind
speed, rotation speed of the turbine, pitch angle of the rotor blade, wind direction and
nacelle orientation. The idea is to include only metadata that is likely to affect the mea-
surement conditions, either by changing the sensor sensitivity or by changing the relative
position and exposure of a rotor blade to the radar sensor. The angle value for wind di-
rection and nacelle orientation is formatted into the coordinates of a point on the unit
circle, resulting in a total set of eight metadata values assigned to the radargram and la-
bel of a given measurement. All metadata are normalized to intervals of [0, 1] or [-1, 1]
for better interpretation by the CNN. The set of eight metadata values is then concate-
nated with the first fully connected layer (after the ReLU) and then connected with the
last fully connected layer.

In the current stage of model development, a total of 11 500 valid samples collected
between 03/20/2023 and 03/31/2023 were analyzed for turbine 1. The dataset was ran-
domly partitioned into 6 900 training samples, 2 300 validation samples and 2 300 test
samples. Metadata values were integrated as previously described. To evaluate the model
performance, the fl1-score was calculated as the harmonic mean of precision and recall.
An overview of the scores after training the model for 10 epochs is shown in Table
Class ROTX represents rotor blade number X of turbine 1. One can see that the training
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Figure 5. Confusion matrix of the optimized model applied on the test data of 2300
samples in total.

data is almost fully comprehended by the CNN. The model shows a reduced classifi-
cation score for the validation data and the test data unseen during optimization. The
detection of ROT2 inside a radargram is slightly worse compared to ROTI and ROT3. A
closer look at the classification results is provided by the confusion matrix for the test
set in Figure[5] With an f1-score of 0.984 to 0.987 for the training data, the model shows
to comprehend the feature distribution of the training data. Applied on the validation
data, seen during optimization and the test data, unseen during optimization, the model
reaches an f1-score between 0.886 and 0.923.

The number of examples used only cover a small subset of the complexity of all fea-
tures for each rotor blade. Such features are the characteristic reflection of a rotor blade
combined with the relative position of the blade to the radar sensor paired with external
(weather) conditions. Differences between individual rotor blades can be explained by
manufacturing defects, minor differences in blade geometry or local thickness and den-
sity after manufacturing or by operational damages like erosion or hail. Taking that into
account, a set of measurements, continuously collected across a year, should contain a
reliable representation of common cases and features required for a robust and strong
radar-based discrimination of rotor blades of a given turbine.



CONCLUSIONS AND OUTLOOK

In this paper we presented the setup of an SHM measurement system on two running
wind turbines. An overview of the data sets was given and first analyses were performed
using a CNN approach for rotor blade detection. The CNN shows good capabilities to
distinguish the rotor blades based on the radar data alone.

First results on the radar-based classification of individual rotor blades, as shown in
the previous section, indicate a promising future for the structural health monitoring of
wind turbines and similar applications. The differences between individual blades are
not visible to the naked eye in the radargrams. The same is true for minor damage. The
fact that the former can be detected by a neural network makes us confident that damage
can also be detected and possibly even classified.
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