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ABSTRACT

Recently, remote sensing satellites, unmanned aerial vehicles (UAVs), and
smartphones have been extensively utilized in non-contact post-earthquake inspection
at different scales with cutting-edge computer vision and machine learning techniques.
This study establishes a computer-vision-based coarse-to-fine seismic assessment
framework to localize dense buildings in urban areas, classify collapsed and non-
collapsed states, recognize multi-type surface damage on structural components, and
evaluate seismic performances. First, a Transformer-CNN deep learning architecture is
designed for semantic segmentation of dense buildings and binary classification of
collapsed states using large-scale remote sensing satellite images. It consists of a Swin
Transformer encoder, multi-stage feature fusion module, and UPerNet decoder to
extract global correlations and local features of dense buildings synchronously. Then, a
multi-task learning strategy is proposed to simultaneously recognize multi-type
structural components (column, beam, wall), seismic damage (concrete crack, spalling,
and rebar exposure), and multi-level damage states (minor, moderate, major) using
medium-scale UAV images. It contains a CNN-based encoder-decoder backbone with
skip-connection modules and multi-head segmentation subnetworks for different tasks.
The geometric consistency loss of split line, area, and curvature is further designed to
refine the semantic segmentation of local details, increase boundary smoothness, and
suppress inner voids. Finally, a machine learning neural network is established to
quantify the seismic damage index of structural components using damage-related
parameters (lengths, areas, and numbers of concrete crack, spalling, and rebar exposure)
and design-related parameters (axial compression ratio, shear span ratio, and volumetric
stirrup ratio) as inputs. A seismic damage indicator with an explicit bound of [0,1] can
be obtained to reflect the nonlinear accumulation of seismic damage. The effectiveness
and applicability under real-world post-earthquake scenarios have been validated by the
2017 Mexico City Earthquake M7.1, 2008 Beichuan Earthquake M8.0, 2010 Yushu
Earthquake M6.9, 2015 Nepal Earthquake M7.8, 2016 Ecuador Earthquake M7.8, and
2016 Meinong Earthquake M6.7.
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1 INTRODUCTION

Earthquakes may significantly impact the safety of city buildings, and most of the
casualties and economic losses are closely related to seismic disasters. Therefore,
precise damage localization and rapid condition assessment of post-earthquake
buildings in urban areas are critical for emergency responses and rescue decisions.
Recently, the rapid development of machine learning and computer vision techniques
profoundly promoted the evolution of earthquake engineering, integrating with remote
sensing, UAVSs, and robot techniques [1-11]. Images acquired by different platforms
have unique advantages and characteristics. The satellite remote sensing images can
quickly obtain the large-scale general location of building groups, but the only visible
information of building roofs affects the evaluation accuracy; UAV and smartphone
images can convey more precise details on building facades and local components, but
the inspection range is limited. This study establishes a multi-scale damage recognition,
localization, and assessment framework for post-earthquake buildings using large-scale
satellite images, median-scale UAV images, and small-scale smartphone images.

2 METHODOLOGY
2.1 Overall Framework

Figure 1 shows the overall schematic of coarse-to-fine seismic assessment based on
computer vision, including large-scale dense building localization and semantic
segmentation using remote sensing images, medium-scale recognition of multi-type
structural components, seismic damage, and deterioration states using UAV images, and
fine-scale evaluation of seismic damage index based on experimental data and images.

2.2 Large-scale Coarse Assessment by Remote Sensing Satellite Images

To accomplish the fast localization and preliminary evaluation of post-earthquake
buildings in city areas, a two-stage building location and damage assessment method is
developed considering the spatial distribution, small size, and imbalanced numbers of
dense buildings [12]. As shown in Figure 2, it includes a modified You Only Look Once
(YOLOV4) object detection module and a support vector machine (SVM) based
classification module. The multi-scale features of densely distributed buildings are
extracted and fused, and three statistics (e.g., the angular second moment, dissimilarity,
and inverse difference moment) are further discovered based on the gray-level co-
occurrence matrix as the texture features to distinguish damage intensities of buildings.
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Figure 1. Schematic of computer-vision-based coarse-to-fine seismic assessment
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Figure 2. Two—stage building localization and collapse classification based on YOLOv4 and SVM [12]

Furthermore, a novel improved Swin Transformer is proposed to segment dense
urban buildings at pixel level by remote sensing images with complex backgrounds, as
shown in Figure 3 [13]. The original Swin Transformer is utilized as the backbone of
the encoder, and a convolutional block attention module is inserted at patch embedding
and patch merging stages. Hierarchical feature maps are fused together and then fed into
UPerNet decoder. It enables the model to learn the separability of building damage
states and location semantics and improve multi-class segmentation accuracy.

2.3 Medium-scale Moderate Assessment by Multi-task Learning of UAV Images

Because potential features and inherent dependencies of seismic damages on
structures are supposed to exist among different post-earthquake inspection tasks, a
multi-task learning approach is proposed to simultaneously accomplish the semantic
segmentation of seven-type structural components, three-type seismic damages, and
four-type deterioration states [14]. The proposed method contains a backbone network
and a multi-head task-specific recognition network, as shown in Figure 4. The backbone
network follows a CNN-based encoder-decoder structure with skip-connection modules
and is designed to extract multi-level features based on the physical properties and
structural mechanics of post-earthquake RC structures. The multi-head task-specific
recognition network consists of three individual self-attention pipelines, each of which
utilizes the extracted multi-level features from the backbone network as the mutual
guidance for the corresponding individual segmentation task of structural component,
seismic damage, and deterioration state, respectively.
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Figure 3. Improved Swin Transformer for dense building segmentation and state classification [13]
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Figure 4. Multi-task learning semantic segmentation of structural component, damage, and state [14]

To train the multi-task learning model, a synthetical loss function is accordingly
designed with real-time adaptive coefficients to balance the multi-task losses and focus
on the most unstable fluctuating tasks:
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where L denotes the overall loss, A; denotes the coefficient of ith task-specific loss, K
denotes the number of tasks, L; denotes the cross-entropy loss for training the ith task,
N denotes the pixel number of the input image, y; denotes the label of the jth pixel, and
p; denotes the positive classification probability by a softmax function. t denotes the
current iteration, w; denotes the change rate of current and previous losses for the ith
task loss, and T is the scaling hyperparameter avoiding the exponential explosion. The
real-time proportion of each task loss is controlled by A5+,
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2.4 Boundary Refinement by Geometric Consistency

A novel loss function named geometric consistency enhanced (GCE) loss is
designed considering the geometrical constraints of split line length, curvature, and area
to focus on local boundaries and improve the segmentation details [15-17]:
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where a1, a2, and az denote three individual weight coefficients; they are treated as

hyperparameters, and appropriate values should be selected for a specific task. vand u

denote the predicted and ground-truth masks, respectively. > L (h,w) and ) L} (h,w),
h,w h,w



> Ly (hw) and ) L (h,w) denote the split line lengths in the height and width directions
ch)fw x and y a;'gs, respectively. ch(h,w) and ZC“(h,w) denote the split line
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2.5 Small-scale Fine Assessment by Hysteresis Machine Learning

Using machine learning and computer vision techniques can establish classifiers to
model the relationship between seismic images and damage levels. However, they are
black-box models lacking interpretability. An earthquake engineering knowledge-
enhanced machine learning method is established for seismic damage assessment of
structural components, as shown in Figure 5 [18,19]. First, a synthetical indicator of
seismic damage with an explicit bound of [0,1] is designed based on refined Park-Ang
model. Then, a deep neural network is established for the damage index regression. Both
damage-related parameters (lengths, areas, and numbers of various damage regions of
concrete crack, concrete spalling, and rebar exposure) and design-related parameters
(axial compression ratio, shear span ratio, and volumetric stirrup ratio) are used as inputs.

3 RESULTS AND DISCUSSION

The investigated xBD dataset includes 386 optical images of the 2017 Mexico City
earthquake with a resolution of 1024 =< 1024 pixels. Statistical analysis shows that the
average localization accuracy of buildings exceeds 95.7% and that the binary
classification accuracy for damage assessment reaches 97.1% [12]. Some representative
results of dense building localization and collapse classification are shown in Figure 6.
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(b) Deep neural network for seismic damage index regression [19]
Figure 5. Schematic of damage index quantification using quasi-static experimental data and images



Test No Damage/Minor Major

Image Damage Damage/Destroyed
(a) 87/115 (75.7%) 7/8 (87.5%)
(b) 26/39 (66.7%) 2/2 (100%)

(c) 194/227 (85.5%) 1/1 (100%)

(d) 188/229 (82.1%) 1/1 (100%)

(b) () (d)
2017 Mexico City Earthquake

Figure 6. Representative results of two-stage dense building localization and collapse classification [12]

To further demonstrate the semantic segmentation accuracy on post-earthquake
dense buildings, remote sensing seismic images in Yushu City and Beichuan city with
various weather disturbances are tested [13]. Figure 7 shows representative test results
of large-scale images with a resolution of 4608 > 2560 under different weather
disturbances. The results show that the improved Swin Transformer gains higher
accuracy and better robustness against light overexposure, darkness, and fog occlusions
than the original Swin Transformer.

For the geometric consistency guided medium-scale assessment, 480 original UAV
images from Beichuan city are investigated, as shown in Figure 8. The results show that
the proposed GCE loss can effectively suppress the false-positive small-region noise by
adding constraints of overall geometrical shapes [17].

For the quantification of the seismic damage index, images and experimental data
of 124 RC columns during the entire quasi-static experiment process are utilized [19].
The results show that the established regression model of the seismic damage index is
unbiased and stable without overfitting. Additional comparative studies are further
performed to verify the effectiveness, necessity, robustness, and generalization ability
under other real-world post-earthquake scenarios, as shown in Figure 9.
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Figure 7. Representative test results of large-scale images under different weather disturbances using the
improved Swin Transformer [13]
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Figure 8. Representative results of geometric consistency enhanced building segmentation [17]
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Stage Precision Recall F1-score
1 73.68% 82.35% 77.78%
2 93.22% 82.09% 87.30%
3 87.50% 98.24% 92.56%
4 96.72% 93.65% 95.16%
5 93.33% 95.45% 94.38%

Figure 9. Representative results of machine learning based seismic damage index assessment [19]

4 CONCLUSIONS

This study establishes a computer-vision-based coarse-to-fine seismic assessment
framework to localize dense buildings in urban areas, classify collapsed and non-
collapsed states, recognize multi-type surface damage on structural components, and
evaluate seismic performances. A series of Transformer, CNN, and NN-based deep
learning models are designed for the localization, classification, and quantification of
dense buildings, deterioration states, and damage index using large-scale remote sensing
satellite images, medium-scale UAV images, near-field surface images, and quasi-static
experimental data.
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