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ABSTRACT 
 

Recently, remote sensing satellites, unmanned aerial vehicles (UAVs), and 
smartphones have been extensively utilized in non-contact post-earthquake inspection 
at different scales with cutting-edge computer vision and machine learning techniques. 
This study establishes a computer-vision-based coarse-to-fine seismic assessment 
framework to localize dense buildings in urban areas, classify collapsed and non- 
collapsed states, recognize multi-type surface damage on structural components, and 
evaluate seismic performances. First, a Transformer-CNN deep learning architecture is 
designed for semantic segmentation of dense buildings and binary classification of 
collapsed states using large-scale remote sensing satellite images. It consists of a Swin 
Transformer encoder, multi-stage feature fusion module, and UPerNet decoder to 
extract global correlations and local features of dense buildings synchronously. Then, a 
multi-task learning strategy is proposed to simultaneously recognize multi-type 
structural components (column, beam, wall), seismic damage (concrete crack, spalling, 
and rebar exposure), and multi-level damage states (minor, moderate, major) using 
medium-scale UAV images. It contains a CNN-based encoder-decoder backbone with 
skip-connection modules and multi-head segmentation subnetworks for different tasks. 
The geometric consistency loss of split line, area, and curvature is further designed to 
refine the semantic segmentation of local details, increase boundary smoothness, and 
suppress inner voids. Finally, a machine learning neural network is established to 
quantify the seismic damage index of structural components using damage-related 
parameters (lengths, areas, and numbers of concrete crack, spalling, and rebar exposure) 
and design-related parameters (axial compression ratio, shear span ratio, and volumetric 
stirrup ratio) as inputs. A seismic damage indicator with an explicit bound of [0,1] can 
be obtained to reflect the nonlinear accumulation of seismic damage. The effectiveness 
and applicability under real-world post-earthquake scenarios have been validated by the 
2017 Mexico City Earthquake M7.1, 2008 Beichuan Earthquake M8.0, 2010 Yushu 
Earthquake M6.9, 2015 Nepal Earthquake M7.8, 2016 Ecuador Earthquake M7.8, and 
2016 Meinong Earthquake M6.7. 
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1 INTRODUCTION 
 

Earthquakes may significantly impact the safety of city buildings, and most of the 

casualties and economic losses are closely related to seismic disasters. Therefore, 

precise damage localization and rapid condition assessment of post-earthquake 

buildings in urban areas are critical for emergency responses and rescue decisions. 

Recently, the rapid development of machine learning and computer vision techniques 

profoundly promoted the evolution of earthquake engineering, integrating with remote 

sensing, UAVs, and robot techniques [1-11]. Images acquired by different platforms 

have unique advantages and characteristics. The satellite remote sensing images can 

quickly obtain the large-scale general location of building groups, but the only visible 

information of building roofs affects the evaluation accuracy; UAV and smartphone 

images can convey more precise details on building facades and local components, but 

the inspection range is limited. This study establishes a multi-scale damage recognition, 

localization, and assessment framework for post-earthquake buildings using large-scale 

satellite images, median-scale UAV images, and small-scale smartphone images. 

 

 

2 METHODOLOGY 

 

2.1 Overall Framework 

 

Figure 1 shows the overall schematic of coarse-to-fine seismic assessment based on 

computer vision, including large-scale dense building localization and semantic 

segmentation using remote sensing images, medium-scale recognition of multi-type 

structural components, seismic damage, and deterioration states using UAV images, and 

fine-scale evaluation of seismic damage index based on experimental data and images. 
 

2.2 Large-scale Coarse Assessment by Remote Sensing Satellite Images 

 

To accomplish the fast localization and preliminary evaluation of post-earthquake 

buildings in city areas, a two-stage building location and damage assessment method is 

developed considering the spatial distribution, small size, and imbalanced numbers of 

dense buildings [12]. As shown in Figure 2, it includes a modified You Only Look Once 

(YOLOv4) object detection module and a support vector machine (SVM) based 

classification module. The multi-scale features of densely distributed buildings are 

extracted and fused, and three statistics (e.g., the angular second moment, dissimilarity, 

and inverse difference moment) are further discovered based on the gray-level co-

occurrence matrix as the texture features to distinguish damage intensities of buildings. 

 

 

  
Figure 1. Schematic of computer-vision-based coarse-to-fine seismic assessment 
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Figure 2. Two-stage building localization and collapse classification based on YOLOv4 and SVM [12] 

 

 

Furthermore, a novel improved Swin Transformer is proposed to segment dense 

urban buildings at pixel level by remote sensing images with complex backgrounds, as 

shown in Figure 3 [13]. The original Swin Transformer is utilized as the backbone of 

the encoder, and a convolutional block attention module is inserted at patch embedding 

and patch merging stages. Hierarchical feature maps are fused together and then fed into 

UPerNet decoder. It enables the model to learn the separability of building damage 

states and location semantics and improve multi-class segmentation accuracy. 

 

2.3 Medium-scale Moderate Assessment by Multi-task Learning of UAV Images 

 

Because potential features and inherent dependencies of seismic damages on 

structures are supposed to exist among different post-earthquake inspection tasks, a 

multi-task learning approach is proposed to simultaneously accomplish the semantic 

segmentation of seven-type structural components, three-type seismic damages, and 

four-type deterioration states [14]. The proposed method contains a backbone network 

and a multi-head task-specific recognition network, as shown in Figure 4. The backbone 

network follows a CNN-based encoder-decoder structure with skip-connection modules 

and is designed to extract multi-level features based on the physical properties and 

structural mechanics of post-earthquake RC structures. The multi-head task-specific 

recognition network consists of three individual self-attention pipelines, each of which 

utilizes the extracted multi-level features from the backbone network as the mutual 

guidance for the corresponding individual segmentation task of structural component, 

seismic damage, and deterioration state, respectively. 

 

 

 
Figure 3. Improved Swin Transformer for dense building segmentation and state classification [13] 
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Figure 4. Multi-task learning semantic segmentation of structural component, damage, and state [14] 

 

 

To train the multi-task learning model, a synthetical loss function is accordingly 

designed with real-time adaptive coefficients to balance the multi-task losses and focus 

on the most unstable fluctuating tasks: 
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where 𝐿 denotes the overall loss, 𝜆𝑖 denotes the coefficient of ith task-specific loss, K 

denotes the number of tasks, 𝐿𝑖 denotes the cross-entropy loss for training the ith task, 

N denotes the pixel number of the input image, 𝑦𝑗 denotes the label of the jth pixel, and 

𝑝𝑗 denotes the positive classification probability by a softmax function. t denotes the 

current iteration, 𝜔𝑖 denotes the change rate of current and previous losses for the ith 

task loss, and T is the scaling hyperparameter avoiding the exponential explosion. The 

real-time proportion of each task loss is controlled by 𝜆𝑖
𝑡+1. 

 

2.4 Boundary Refinement by Geometric Consistency 

 

A novel loss function named geometric consistency enhanced (GCE) loss is 

designed considering the geometrical constraints of split line length, curvature, and area 

to focus on local boundaries and improve the segmentation details [15-17]: 
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where α1, α2, and α3 denote three individual weight coefficients; they are treated as 

hyperparameters, and appropriate values should be selected for a specific task. v and u 

denote the predicted and ground-truth masks, respectively. 
,
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2.5 Small-scale Fine Assessment by Hysteresis Machine Learning 

 

Using machine learning and computer vision techniques can establish classifiers to 

model the relationship between seismic images and damage levels. However, they are 

black-box models lacking interpretability. An earthquake engineering knowledge-

enhanced machine learning method is established for seismic damage assessment of 

structural components, as shown in Figure 5 [18,19]. First, a synthetical indicator of 

seismic damage with an explicit bound of [0,1] is designed based on refined Park-Ang 

model. Then, a deep neural network is established for the damage index regression. Both 

damage-related parameters (lengths, areas, and numbers of various damage regions of 

concrete crack, concrete spalling, and rebar exposure) and design-related parameters 

(axial compression ratio, shear span ratio, and volumetric stirrup ratio) are used as inputs. 

 

 

3 RESULTS AND DISCUSSION 

 

The investigated xBD dataset includes 386 optical images of the 2017 Mexico City 

earthquake with a resolution of 1024 × 1024 pixels. Statistical analysis shows that the 

average localization accuracy of buildings exceeds 95.7% and that the binary 

classification accuracy for damage assessment reaches 97.1% [12]. Some representative 

results of dense building localization and collapse classification are shown in Figure 6. 

 

 

 
(a) Region-based object detection for multi-type seismic damage from images [18] 

 
(b) Deep neural network for seismic damage index regression [19] 

Figure 5. Schematic of damage index quantification using quasi-static experimental data and images 
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Figure 6. Representative results of two-stage dense building localization and collapse classification [12] 

 

 

To further demonstrate the semantic segmentation accuracy on post-earthquake 

dense buildings, remote sensing seismic images in Yushu City and Beichuan city with 

various weather disturbances are tested [13]. Figure 7 shows representative test results 

of large-scale images with a resolution of 4608 × 2560 under different weather 

disturbances. The results show that the improved Swin Transformer gains higher 

accuracy and better robustness against light overexposure, darkness, and fog occlusions 

than the original Swin Transformer. 

For the geometric consistency guided medium-scale assessment, 480 original UAV 

images from Beichuan city are investigated, as shown in Figure 8. The results show that 

the proposed GCE loss can effectively suppress the false-positive small-region noise by 

adding constraints of overall geometrical shapes [17]. 

For the quantification of the seismic damage index, images and experimental data 

of 124 RC columns during the entire quasi-static experiment process are utilized [19]. 

The results show that the established regression model of the seismic damage index is 

unbiased and stable without overfitting. Additional comparative studies are further 

performed to verify the effectiveness, necessity, robustness, and generalization ability 

under other real-world post-earthquake scenarios, as shown in Figure 9. 

 

 

 
Figure 7. Representative test results of large-scale images under different weather disturbances using the 

improved Swin Transformer [13] 
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Figure 8. Representative results of geometric consistency enhanced building segmentation [17] 

 

 

 
Figure 9. Representative results of machine learning based seismic damage index assessment [19] 
 

 

4 CONCLUSIONS 

 

This study establishes a computer-vision-based coarse-to-fine seismic assessment 

framework to localize dense buildings in urban areas, classify collapsed and non-

collapsed states, recognize multi-type surface damage on structural components, and 

evaluate seismic performances. A series of Transformer, CNN, and NN-based deep 

learning models are designed for the localization, classification, and quantification of 

dense buildings, deterioration states, and damage index using large-scale remote sensing 

satellite images, medium-scale UAV images, near-field surface images, and quasi-static 

experimental data. 
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