
ABSTRACT 

Nonlinear ultrasonic techniques have emerged as a promising tool for detecting 
defect in concrete. However, detecting the first and higher harmonics of ultrasonic 
waves in concrete can be challenging due to its complexity and heterogeneity nature 
characteristics. In this study, a deep learning algorithm was used to improve the 
accuracy of defect identification. Experiments were conducted on three concrete 
block samples, including pure concrete and two concrete samples with inclusions. 
The study utilized an array of R6 sensors as transmitters and an array of R15 sensors 
as receivers for the measurements. The deep learning algorithm was applied to the 
wavelet spectrogram of each wave, using 1050 images for training, 116 images for 
validation, and 292 images for testing. Convolutional neural networks (CNN) were 
used in the deep learning model. The approach focused on the regions in the first and 
second harmonic, which are more representative of defect, in the deep learning 
method. The proposed network consists of several layers that perform different 
operations to extract relevant features from the input data. The experiments 
demonstrated the effectiveness of using deep learning algorithms for identifying and 
classifying defect in concrete. The model achieved an overall accuracy of 94.8% in 
detecting defect in the concrete samples, with a high precision score for both defect 
and no-defect identification. This approach successfully detected defect in concrete 
samples, including the presence of inclusions. As a result, the study showed that deep 
learning algorithms can be effective in identifying and classifying defect in concrete, 
with the potential to improve the maintenance and management of concrete 
structures, enhancing their safety and durability. 

INTRODUCTION 

Ultrasonic testing (UT) is an active non-destructive testing method to assess the 
discontinuities within materials [1,2]. When the method is applied to concrete 
structures, ultrasonic waves are typically generated by a piezoelectric transmitter 
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[3,4]. Conventionally, concrete damage is detected by indirectly measuring wave 
velocity, time of arrival, and amplitude [5]. However, the resolution of linear 
ultrasonics is constrained by the wavelength of the waves. This limitation becomes 
particularly pronounced when examining concrete structures, as concrete tends to 
scatter the waves at higher frequencies, thus further hindering resolution capabilities.    

Nonlinear ultrasonic testing (NLUT), on the other hand, advances the method by 
incorporating the nonlinear behavior of the materials [6]. NLUT enhances the 
sensitivity for detecting subwavelength defects and improves ultrasonic resolution. 
One commonly employed method to investigate nonlinearity is the higher harmonic 
generation method. This technique takes advantage of the distortion of waves and the 
generation of higher harmonic waves that occur when the initial harmonic signal 
interacts with heterogeneities within the material. By analyzing these higher 
harmonics, valuable insights can be gained regarding the nonlinear behavior of the 
material under study [6]. In the context of concrete, the focus is primarily on the 
second harmonic wave. The level of nonlinearity is described by the acoustic 
nonlinearity coefficient 𝛽𝛽, which represents the proportion of the amplitude of the 
second harmonic wave to the amplitude square of the first harmonic wave [7,8]. One 
of the challenges associated with this method is the strong influence of natural 
heterogeneities and the dispersive characteristics of concrete on the harmonic 
amplitudes. The presence of aggregates in concrete leads to interference with the 
ultrasonic wave, causing the medium to behave like a scatterer.  The frequency shift 
observed in the second harmonic of an ultrasonic wave can be attributed to the 
dispersive nature of concrete. This dispersion effect arises because higher-frequency 
components tend to propagate faster compared to lower-frequency components. As a 
result, the different frequencies composing the wave experience varying propagation 
velocities, leading to a frequency shift in the second harmonic. As a result, the second 
harmonic may be shifted to slightly higher or lower frequencies than expected [6,7,9], 
depending on the specific characteristics of the concrete specimen. 

To comprehensively analyze the characteristics of ultrasonic waves related to 
defects in complex concrete materials, relying solely on single feature-based 
algorithms may not provide sufficient reliability and accuracy. Deep learning, on the 
other hand, is a method that can be directly applied to time history signals and 2D 
images [10], eliminating the need for explicit feature extraction from the data. Deep 
learning has the capability to automatically learn and extract relevant pattern from 
the input data [11,12], enabling a more reliable analysis of ultrasonic wave 
characteristics in challenging materials such as concrete. 

This paper aims to develop a deep learning framework that can automatically 
detect the presence of defects in ultrasonic waves. The approach involves training 
multiple wavelet spectrograms to accurately identify whether a particular wave path 
contains a defect. Through experiments, the study demonstrates the effectiveness of 
utilizing deep learning algorithms for defect identification in concrete. 
 
 
EXPERIMENTS AND CHALLENGES 
 
Experimental Setup 

 



The experiments were conducted using three different concrete specimens. 
One of the specimens represented pure concrete without any defects and served as 
the reference, while the other two specimens contained multiple inclusions that 
simulated defects (as illustrated in Figure 1). The side surfaces of the concrete were 
equipped with an array of R6 and R15 sensors, and the data acquisition was 
performed using a PCI-8 data acquisition system manufactured by MISTRAS Group. 
The received signals were amplified using a pre-amplifier with a 40 dB gain and then 
filtered using a 20-400 kHz band-pass analog filter. The sensor array consisted of 9 
transmitters and 9 receivers, resulting in a total of 81 wave paths within each 
measurement. A 10-cycle constant amplitude sine wave with frequency at 75 kHz 
was generated as the transmission signal. The measurements were repeated in both 
orientations, and each measurement was conducted three times for accuracy and 
reliability. Consequently, a total of 1458 paths were considered in this study. To train, 
validate, and test the proposed deep learning algorithm, random selection was used 
to allocate 72% of the paths for training, 8% for validation, and 20% for the test set. 

Figure 1. Experimental setup (a) concrete with no defect (b) concrete with foam inclusion (c) 
concrete with steel inclusion (d) data acquisition system configuration



Challenges of Conventional NLUT 
 
 Figure 2a and b present an example of wave propagation path passing through 
a defect and time history signal obtained by the receiving transducer. To quantify the 
nonlinearity coefficient 𝛽𝛽, the time domain signal is transformed into the frequency 
domain, and the corresponding amplitude at the desired frequency is extracted. As 
indicated in Figure 2c, the first harmonic frequency of the first harmonic signal 
exhibits the highest amplitude, while the second harmonic peak is observed in the 
frequency range of 135 kHz to 155 kHz. It is important to note that the amplitude at 
150 kHz experiences a decrease, and the peak corresponding to the second harmonic 
is shifted to 140 kHz. This observation suggests that relying exclusively on the 
amplitude at the precise second harmonic frequency may lead to unreliable results 
and introduce errors in experiments. The frequency shift arises because of the 
dispersive characteristics of concrete. To tackle this challenge and mitigate the 
complexities associated with the nature of concrete, a defect identification framework 
based on deep learning is proposed.  
 
 
 

 
 

Figure 2. An example of the NLUT results using the second harmonic generation method (a) a wave 
path through the defect (red circles) (b) the received time history signal (c) frequency spectrum 
indicating a shift in the second harmonic frequency (d) wavelet spectrogram of the waveform 



DEEP LEARNING ARCHITECTURE 
 
Convolutional Neural Network 
 
 The Convolutional Neural Network (CNN) comprises multiple layers 
designed to perform various operations for feature extraction from input data [13,14]. 
In this study, the input data consists of multi-dimensional images. Unlike 
conventional neural networks where each layer is one-dimensional, each layer of a 
CNN has three dimensions: height, width, and depth. For instance, the input image is 
an RGB image (wavelet spectrogram) with a width of 875 pixels, a height of 676 
pixels, and a depth of 3 channels (corresponding to the red, green, and blue color 
channels). 

The CNN architecture is designed specifically for accurate classification of 
defects in concrete samples. The network integrates wavelet spectrograms obtained 
from the NLUT method as input images. Each image is labeled based on whether the 
wave propagates through a defect. If a defect is present in the wave path, the image 
is labeled as "1”. Conversely, if there is no defect in the wave propagation path, the 
image is labeled as "0." As depicted in Figure 3, before inputting the image into the 
CNN architecture, preprocessing steps are undertaken. These steps involve 
segmenting the spectrogram to include only two specific frequency bands: 145-155 
kHz and 70-80 kHz. The frequency range of 70-80 kHz highlights the first harmonic 
wave, whereas the range of 145-155 kHz is dominated by the second harmonic wave. 
By segmenting the original image and including only the parts that exhibit greater 
contrast in identifying the presence of defects in the signal, the robustness of the 
defect identification algorithm is maximized. In Figure 3b, an image is generated by 
combining the two frequency bands, resulting in an image with a width of 675 pixels, 
a height of 90 pixels, and a depth of 3 (representing the RGB channels). To ensure 
compatibility with the CNN architecture, it is necessary to resize all input images to 
a standardized dimension. This resizing process ensures that all images have the same 
dimensions before being fed into the CNN for further processing. 

The proposed CNN architecture comprises a total of seven layers, including 
two convolutional layers, two MaxPooling layers, one flatten layer, one dense layer, 
and one output layer. The first layer is a convolutional layer with 32 filters of size 
3×3. This layer applies these filters to the input spectrograms, convolving them to 
capture local patterns and features. The Rectified Linear Unit (ReLU) activation 
function is applied, introducing non-linearity to enhance the network's capacity to 
learn intricate representations. After the convolutional layer, a MaxPooling layer is 
introduced. The purpose of this layer is to downsample the feature map, reducing its 
spatial dimensions while preserving the important signal features. By reducing the 
spatial dimensions, the MaxPooling layer helps decrease the computational cost and 
allows the network to focus on the essential information within the signal. This 
process is repeated once more, incorporating another convolutional layer and a 
subsequent MaxPooling layer, but this time utilizing 64 filters instead of 32. These 
steps help to further extract more intricate patterns and features from the preprocessed 
images. A flatten layer is introduced next to transform the 2D feature map into 1D 
vector, allowing for the subsequent fully connected layers to process the extracted 
features. Once the features are flattened, they are forwarded through a dense layer 
consisting of 64 neurons. This layer establishes connections among all the neurons in  



Figure 3. The schematic of the CNN architecture (a) wavelet spectrogram obtained from each wave 
path (b) the input image of combined spectrogram segmentation (c) the RGB image pixel 

information (d) the CNN architecture network layout 

the previous layer and the following layer. By integrating features from various 
regions of the input spectrogram, the dense layer acquires knowledge of higher-level 
representations. Finally, the output layer comprises a solitary neuron equipped with 
a sigmoid activation function. This function determines the probability of a defect 
being present in the concrete sample. The sigmoid activation guarantees that the 
output falls within the range of 0 to 1, indicating the level of confidence in the 
classification of defects. 

In summary, the proposed CNN framework utilizes deep learning with 
multiple layers to automatically detect defects in concrete. The framework has the 
capability to learn and extract meaningful information from the input data, enabling 
accurate identification of defects.  

RESULTS AND DISCUSSION 

The CNN architecture described above was applied to the ultrasonic signals 
obtained from three concrete samples shown in Figure 1. The dataset consisted of 
samples with both defect and no-defect ultrasonic paths. The results as shown in 
Figure 4 demonstrates the effectiveness of the defect classification. Figure 4a 
presents the relationship between the batch size (number of input spectrograms from 



two classes as defect and no-defect) and the prediction accuracy, revealing that the 
optimal batch size should be chosen to maximize accuracy. The results indicate that 
a batch size of 16 reveals the highest accuracy in predicting the defect classification. 
The learning curve was analyzed to observe the training loss and validation loss as 
the model undergoes multiple training epochs. Each epoch represents a complete pass 
of the entire training dataset through the neural network, allowing it to learn and 
update its parameters iteratively. The results shown in Figure 4b indicate that the 
model successfully learned the underlying patterns without overfitting. Both the 
training and validation loss exhibit a decreasing trend from the 1st to the 14th epoch, 
suggesting that the model improved its performance over time. However, after the 
15th epoch, the loss function started to increase, indicating that the model may have 
started to overfit the training data. The results provide valuable insights for selecting 
the proper hyperparameter to ensure the model performance.  

The confusion matrix further reveals the model's performance by showing 
the counts of true positive, true negative, false positive, and false negative 
predictions as shown in Figure 5. The model achieved a high number of true 
positive and true negative predictions, indicating its ability to accurately classify 
both defective and non-defective samples. The overall predicting accuracy reached 
94.8%, with a precision of 95.1% for detecting defects and 94.6% for detecting no-
defects. These research findings highlight the effectiveness of using proposed CNN 
framework for accurate defect detection in concrete samples.  
 

 
 
 

 
 

Figure 4. (a) The accuracy variation with respect to batch size and (b) the learning curve of the 
proposed convolution neural network 

 



Figure 5. Confusion matrix of the convolution neural network for predicting the presence of the 
defect in concrete 

CONCLUSIONS 

Nonlinear ultrasonic testing (NLUT) of concrete poses the challenges to 
accurately detect the defects due to the heterogeneous and dispersive nature 
characteristics of concrete. To address the issue, deep learning based NLUT defect 
identification is implemented. Convolutional neural networks are employed to 
identify the presence of the defects in ultrasonic paths. The input to the network is a 
set of segmented wavelet spectrogram images of the ultrasonic signals obtained from 
each wave path. By training CNN on the input data, the model automatically learns 
wave interaction pattern and dispersive characteristics of the material. The results 
demonstrate the proposed CNN network enables defect detection in concrete with 
accuracy of 94.8%. To extend the application of the proposed architecture, future 
studies aim to leverage the numerical simulation to generate additional training data. 
The use of recent techniques such as transfer learning and unsupervised domain 
adaptation [15] will be explored to align the numerical results with the characteristics 
of actual experimental data, thereby advancing the defect detection concrete 
structures.  
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