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ABSTRACT

Nonlinear ultrasonic techniques have emerged as a promising tool for detecting
defect in concrete. However, detecting the first and higher harmonics of ultrasonic
waves in concrete can be challenging due to its complexity and heterogeneity nature
characteristics. In this study, a deep learning algorithm was used to improve the
accuracy of defect identification. Experiments were conducted on three concrete
block samples, including pure concrete and two concrete samples with inclusions.
The study utilized an array of R6 sensors as transmitters and an array of R15 sensors
as receivers for the measurements. The deep learning algorithm was applied to the
wavelet spectrogram of each wave, using 1050 images for training, 116 images for
validation, and 292 images for testing. Convolutional neural networks (CNN) were
used in the deep learning model. The approach focused on the regions in the first and
second harmonic, which are more representative of defect, in the deep learning
method. The proposed network consists of several layers that perform different
operations to extract relevant features from the input data. The experiments
demonstrated the effectiveness of using deep learning algorithms for identifying and
classifying defect in concrete. The model achieved an overall accuracy of 94.8% in
detecting defect in the concrete samples, with a high precision score for both defect
and no-defect identification. This approach successfully detected defect in concrete
samples, including the presence of inclusions. As a result, the study showed that deep
learning algorithms can be effective in identifying and classifying defect in concrete,
with the potential to improve the maintenance and management of concrete
structures, enhancing their safety and durability.

INTRODUCTION

Ultrasonic testing (UT) is an active non-destructive testing method to assess the
discontinuities within materials [1,2]. When the method is applied to concrete
structures, ultrasonic waves are typically generated by a piezoelectric transmitter
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[3,4]. Conventionally, concrete damage is detected by indirectly measuring wave
velocity, time of arrival, and amplitude [5]. However, the resolution of linear
ultrasonics is constrained by the wavelength of the waves. This limitation becomes
particularly pronounced when examining concrete structures, as concrete tends to
scatter the waves at higher frequencies, thus further hindering resolution capabilities.

Nonlinear ultrasonic testing (NLUT), on the other hand, advances the method by
incorporating the nonlinear behavior of the materials [6]. NLUT enhances the
sensitivity for detecting subwavelength defects and improves ultrasonic resolution.
One commonly employed method to investigate nonlinearity is the higher harmonic
generation method. This technique takes advantage of the distortion of waves and the
generation of higher harmonic waves that occur when the initial harmonic signal
interacts with heterogeneities within the material. By analyzing these higher
harmonics, valuable insights can be gained regarding the nonlinear behavior of the
material under study [6]. In the context of concrete, the focus is primarily on the
second harmonic wave. The level of nonlinearity is described by the acoustic
nonlinearity coefficient 5, which represents the proportion of the amplitude of the
second harmonic wave to the amplitude square of the first harmonic wave [7,8]. One
of the challenges associated with this method is the strong influence of natural
heterogeneities and the dispersive characteristics of concrete on the harmonic
amplitudes. The presence of aggregates in concrete leads to interference with the
ultrasonic wave, causing the medium to behave like a scatterer. The frequency shift
observed in the second harmonic of an ultrasonic wave can be attributed to the
dispersive nature of concrete. This dispersion effect arises because higher-frequency
components tend to propagate faster compared to lower-frequency components. As a
result, the different frequencies composing the wave experience varying propagation
velocities, leading to a frequency shift in the second harmonic. As a result, the second
harmonic may be shifted to slightly higher or lower frequencies than expected [6,7,9],
depending on the specific characteristics of the concrete specimen.

To comprehensively analyze the characteristics of ultrasonic waves related to
defects in complex concrete materials, relying solely on single feature-based
algorithms may not provide sufficient reliability and accuracy. Deep learning, on the
other hand, is a method that can be directly applied to time history signals and 2D
images [10], eliminating the need for explicit feature extraction from the data. Deep
learning has the capability to automatically learn and extract relevant pattern from
the input data [11,12], enabling a more reliable analysis of ultrasonic wave
characteristics in challenging materials such as concrete.

This paper aims to develop a deep learning framework that can automatically
detect the presence of defects in ultrasonic waves. The approach involves training
multiple wavelet spectrograms to accurately identify whether a particular wave path
contains a defect. Through experiments, the study demonstrates the effectiveness of
utilizing deep learning algorithms for defect identification in concrete.

EXPERIMENTS AND CHALLENGES

Experimental Setup



The experiments were conducted using three different concrete specimens.
One of the specimens represented pure concrete without any defects and served as
the reference, while the other two specimens contained multiple inclusions that
simulated defects (as illustrated in Figure 1). The side surfaces of the concrete were
equipped with an array of R6 and RI15 sensors, and the data acquisition was
performed using a PCI-8 data acquisition system manufactured by MISTRAS Group.
The received signals were amplified using a pre-amplifier with a 40 dB gain and then
filtered using a 20-400 kHz band-pass analog filter. The sensor array consisted of 9
transmitters and 9 receivers, resulting in a total of 81 wave paths within each
measurement. A 10-cycle constant amplitude sine wave with frequency at 75 kHz
was generated as the transmission signal. The measurements were repeated in both
orientations, and each measurement was conducted three times for accuracy and
reliability. Consequently, a total of 1458 paths were considered in this study. To train,
validate, and test the proposed deep learning algorithm, random selection was used
to allocate 72% of the paths for training, 8% for validation, and 20% for the test set.
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Figure 1. Experimental setup (a) concrete with no defect (b) concrete with foam inclusion (c)
concrete with steel inclusion (d) data acquisition system configuration



Challenges of Conventional NLUT

Figure 2a and b present an example of wave propagation path passing through
a defect and time history signal obtained by the receiving transducer. To quantify the
nonlinearity coefficient 5, the time domain signal is transformed into the frequency
domain, and the corresponding amplitude at the desired frequency is extracted. As
indicated in Figure 2c, the first harmonic frequency of the first harmonic signal
exhibits the highest amplitude, while the second harmonic peak is observed in the
frequency range of 135 kHz to 155 kHz. It is important to note that the amplitude at
150 kHz experiences a decrease, and the peak corresponding to the second harmonic
is shifted to 140 kHz. This observation suggests that relying exclusively on the
amplitude at the precise second harmonic frequency may lead to unreliable results
and introduce errors in experiments. The frequency shift arises because of the
dispersive characteristics of concrete. To tackle this challenge and mitigate the
complexities associated with the nature of concrete, a defect identification framework
based on deep learning is proposed.
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Figure 2. An example of the NLUT results using the second harmonic generation method (a) a wave
path through the defect (red circles) (b) the received time history signal (c¢) frequency spectrum
indicating a shift in the second harmonic frequency (d) wavelet spectrogram of the waveform



DEEP LEARNING ARCHITECTURE
Convolutional Neural Network

The Convolutional Neural Network (CNN) comprises multiple layers
designed to perform various operations for feature extraction from input data [13,14].
In this study, the input data consists of multi-dimensional images. Unlike
conventional neural networks where each layer is one-dimensional, each layer of a
CNN has three dimensions: height, width, and depth. For instance, the input image is
an RGB image (wavelet spectrogram) with a width of 875 pixels, a height of 676
pixels, and a depth of 3 channels (corresponding to the red, green, and blue color
channels).

The CNN architecture is designed specifically for accurate classification of
defects in concrete samples. The network integrates wavelet spectrograms obtained
from the NLUT method as input images. Each image is labeled based on whether the
wave propagates through a defect. If a defect is present in the wave path, the image
is labeled as "1”. Conversely, if there is no defect in the wave propagation path, the
image is labeled as "0." As depicted in Figure 3, before inputting the image into the
CNN architecture, preprocessing steps are undertaken. These steps involve
segmenting the spectrogram to include only two specific frequency bands: 145-155
kHz and 70-80 kHz. The frequency range of 70-80 kHz highlights the first harmonic
wave, whereas the range of 145-155 kHz is dominated by the second harmonic wave.
By segmenting the original image and including only the parts that exhibit greater
contrast in identifying the presence of defects in the signal, the robustness of the
defect identification algorithm is maximized. In Figure 3b, an image is generated by
combining the two frequency bands, resulting in an image with a width of 675 pixels,
a height of 90 pixels, and a depth of 3 (representing the RGB channels). To ensure
compatibility with the CNN architecture, it is necessary to resize all input images to
a standardized dimension. This resizing process ensures that all images have the same
dimensions before being fed into the CNN for further processing.

The proposed CNN architecture comprises a total of seven layers, including
two convolutional layers, two MaxPooling layers, one flatten layer, one dense layer,
and one output layer. The first layer is a convolutional layer with 32 filters of size
3x3. This layer applies these filters to the input spectrograms, convolving them to
capture local patterns and features. The Rectified Linear Unit (ReLU) activation
function is applied, introducing non-linearity to enhance the network's capacity to
learn intricate representations. After the convolutional layer, a MaxPooling layer is
introduced. The purpose of this layer is to downsample the feature map, reducing its
spatial dimensions while preserving the important signal features. By reducing the
spatial dimensions, the MaxPooling layer helps decrease the computational cost and
allows the network to focus on the essential information within the signal. This
process is repeated once more, incorporating another convolutional layer and a
subsequent MaxPooling layer, but this time utilizing 64 filters instead of 32. These
steps help to further extract more intricate patterns and features from the preprocessed
images. A flatten layer is introduced next to transform the 2D feature map into 1D
vector, allowing for the subsequent fully connected layers to process the extracted
features. Once the features are flattened, they are forwarded through a dense layer
consisting of 64 neurons. This layer establishes connections among all the neurons in
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Figure 3. The schematic of the CNN architecture (a) wavelet spectrogram obtained from each wave
path (b) the input image of combined spectrogram segmentation (c) the RGB image pixel
information (d) the CNN architecture network layout

the previous layer and the following layer. By integrating features from various
regions of the input spectrogram, the dense layer acquires knowledge of higher-level
representations. Finally, the output layer comprises a solitary neuron equipped with
a sigmoid activation function. This function determines the probability of a defect
being present in the concrete sample. The sigmoid activation guarantees that the
output falls within the range of 0 to 1, indicating the level of confidence in the
classification of defects.

In summary, the proposed CNN framework utilizes deep learning with
multiple layers to automatically detect defects in concrete. The framework has the
capability to learn and extract meaningful information from the input data, enabling
accurate identification of defects.

RESULTS AND DISCUSSION

The CNN architecture described above was applied to the ultrasonic signals
obtained from three concrete samples shown in Figure 1. The dataset consisted of
samples with both defect and no-defect ultrasonic paths. The results as shown in
Figure 4 demonstrates the effectiveness of the defect classification. Figure 4a
presents the relationship between the batch size (number of input spectrograms from



two classes as defect and no-defect) and the prediction accuracy, revealing that the
optimal batch size should be chosen to maximize accuracy. The results indicate that
a batch size of 16 reveals the highest accuracy in predicting the defect classification.
The learning curve was analyzed to observe the training loss and validation loss as
the model undergoes multiple training epochs. Each epoch represents a complete pass
of the entire training dataset through the neural network, allowing it to learn and
update its parameters iteratively. The results shown in Figure 4b indicate that the
model successfully learned the underlying patterns without overfitting. Both the
training and validation loss exhibit a decreasing trend from the 1st to the 14th epoch,
suggesting that the model improved its performance over time. However, after the
15th epoch, the loss function started to increase, indicating that the model may have
started to overfit the training data. The results provide valuable insights for selecting
the proper hyperparameter to ensure the model performance.

The confusion matrix further reveals the model's performance by showing
the counts of true positive, true negative, false positive, and false negative
predictions as shown in Figure 5. The model achieved a high number of true
positive and true negative predictions, indicating its ability to accurately classify
both defective and non-defective samples. The overall predicting accuracy reached
94.8%, with a precision of 95.1% for detecting defects and 94.6% for detecting no-
defects. These research findings highlight the effectiveness of using proposed CNN
framework for accurate defect detection in concrete samples.
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Figure 4. (a) The accuracy variation with respect to batch size and (b) the learning curve of the
proposed convolution neural network
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Figure 5. Confusion matrix of the convolution neural network for predicting the presence of the
defect in concrete

CONCLUSIONS

Nonlinear ultrasonic testing (NLUT) of concrete poses the challenges to
accurately detect the defects due to the heterogeneous and dispersive nature
characteristics of concrete. To address the issue, deep learning based NLUT defect
identification is implemented. Convolutional neural networks are employed to
identify the presence of the defects in ultrasonic paths. The input to the network is a
set of segmented wavelet spectrogram images of the ultrasonic signals obtained from
each wave path. By training CNN on the input data, the model automatically learns
wave interaction pattern and dispersive characteristics of the material. The results
demonstrate the proposed CNN network enables defect detection in concrete with
accuracy of 94.8%. To extend the application of the proposed architecture, future
studies aim to leverage the numerical simulation to generate additional training data.
The use of recent techniques such as transfer learning and unsupervised domain
adaptation [15] will be explored to align the numerical results with the characteristics
of actual experimental data, thereby advancing the defect detection concrete
structures.
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