
ABSTRACT 

Lamb Wave (LW) signal has been widely used as a technique for damage identification and localization 
in Structural Health Monitoring (SHM) due to its sensitivity to varying types of state changes. Analyzing 
and constructing the guided wave signals then become a critical step in damage detection and assessment. 
Researchers have discovered features in both temporal and frequency domains for signal description and 
reconstruction. Yet the related features are challenging to be manually developed as the stochastic acous- 
tic signals captured by sensors can be complex and are determined by various factors such as complex 
boundary conditions and material properties. Recently, neural network has exhibited the capability for 
time series reconstruction yet lacking of interpretability. In this study, a convolutional autoencoder (CAE) 
network has been developed to compress the information of the collected signals along with parameters 
such as damage levels and external loads into time-invariant and time-variant latent spaces at the bot- 
tleneck layer which can be easier to analyze and more efficiently used for state estimation and signal 
reconstruction. The power of estimating signal and its corresponding conditions has been examined by 
combining a feed forward neural network (FFNN) with the encoder or decoder extracted from the CAE 
network so that states of raw signals can be predicted and signals under known states can be reconstructed. 
The proposed framework has been applied in two test cases to verify its capability and stability in terms 
of different latent space types. The experiment was conducted on an Al plate under different damage 
states with PZTs serving as actuators and receivers. It is shown that the state parameters can be estimated 
with high accuracy and the signals can be generated with low error and thus alleviate the requirements of 
time-consuming experiments. 

INTRODUCTION 

Guided-wave signals have been widely used in active-sensing Structural Health Monitoring (SHM) 
field for damage detection, localization and quantification. Existing approaches include advanced signal 
processing techniques [1, 2], advanced statistical modeling techniques [3, 4], and analytical models [5]. 
Yet the stochastic nature of the signals increases the model complexity and computational cost. Moreover, 
various operating and environmental conditions, including external loads, temperatures, etc., make it more 
challenging to build accurate models that take multi-factors into consideration while maintaining accuracy 
and robustness under various conditions. 

Researchers then sought for approaches to find damage sensitive features in order to create damage 
detection schemes that are less computationally intensive and thus makes it possible for online monitor- 
ing process. One of the most popular techniques is to develop Damage Indices (DIs) that are sensitive to 
different damage types and are relatively simpler for computation [6, 7]. Yet the main drawback of such 
method comes from its deterministic property, meaning only point estimation is available and the 
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uncertainty cannot be calculated. When it comes to the dynamic operating conditions where the uncer-
tainty needs to be considered, implementation of DIs may not meet the accuracy requirements. Even in
constant and controlled environments, propagations of damage and vibrations of sensor locations can lead
to fault detections. Under this circumstance, Gaussian Process Regression Models (GPRM) have been
developed to integrate with time series models to account for the uncertainties [8,9]. Yet these approaches
still require domain expertise which can be restricted for online monitoring purpose.

On the other hand, NNs such as Convolutional Neural Network (CNN), Deep Neural Networks (DNN),
and Long Short-term Memory Networks (LSTM) have become popular in SHM applications [10, 11].
Among which, CNN is known for its sparse connection property and temporal feature extraction capabil-
ities. With the aid of convolutional layer followed by down sampling layer, CNN can keep the majority
information of input tensors while saving computational space. Autoencoder (AE) which is a recently
developed network, can compress and then stretch the data for reconstruction purpose. Researchers have
studied the combination of these two networks, called Convolutional Autoencoder (CAE) for active sens-
ing SHM. For example, Guo develops a CAE-based health indicator by comparing similarities between
learned features for baseline samples and unknown samples [12]. Lee applies fatigue damage detector by
checking whether RMSE of the dominant features from the CAE latent space has exceeded the thresh-
old [13]. Yet these techniques can only identify whether the system is under healthy condition or not and
the detailed damage level cannot be predicted. In addition, the models are only sensitive to single damage
case and cannot take multiple factors into account.

In this work, a complete CAE- and FFNN- based scheme for damage quantification and signal recon-
struction scheme is employed. In the train phase, CAE is trained to give accurate reconstructed signals and
FFNN is trained to build accurate mappings. In the test phase, the scheme includes two branches: the first
one is to estimate multivariate damage states given raw signals while the second one is to provide signals
taking only states as inputs. The former branch serves as a damage quantification approach while the later
one can simplify the data collection process when gathering data is time-consuming and restricted. The
main contribution of this study can be summarized as follows: (i) the construction of a CAE based data-
driven modular model consisting of two branches that can compress the signals into a low-dimensional
representation; (ii) the accurate simultaneous prediction of damage severity and load in the active-sensing
SHM framework; (iii) signal reconstruction with low RSS/SSS given only state information as inputs

EXPERIMENTS AND DATA COLLECTION

The expreiment in this study was completed on a 152.4 × 304.8 mm (6 × 12 in) 6061 Aluminum
coupon (2.36 mm/0.093 in thick) where six lead zirconate titanate (PZT) piezoelectric sensors (PZT-5A)
were attached onto its surface shown in Figure 1, where the two . The adhesive was cured under vacuum
for stable performance for 24 hrs at room temperature. In order to implement load, the plate was installed
onto a tensile testing machine (Instron, Inc). Five static loading conditions were applied consecutively: 0,
5, 10, 15 and 20 kN. To simulate different damge level conditions, 1-4 three-gram weights were attached
onto the surface of the plate next to each other during each loading state. Under each condition, sensors 1-
3 were actuated in a consecutive manner, using 5-peak tone bursts (5-cycle Hamming-filtered sine waves)
with 90 V peak-to-peak amplitude. The signals were then collected from sensors 4-6 as receivers. 20
response signals (8 for training and 12 for testing) per structural case were collected at each sensor except
for 20kN load where only 2 responses were collected (1 for training and the other one for testing), which
gives a total of 3690 signals in the entire data set. Data was collected within 333.33µs with a sampling
rate of 24 MHz using a ScanGenie III data acquisition system (Acellent Technologies, Inc). After the data
acquisition process, each signal was down sampled from 8000 length to 800 and the sampling frequency
was decreased from 24MHz to 2.4MHz to decrease the effect of noise yet the main information was kept.

METHODOLOGY

1. Latent Space Representation

Conventional signal processing methods involve time and frequency domain feature extraction. Though
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Figure 1. Flowchart of the proposed scheme including the train phase and two online phases: (a) train phase of CAE
for signal reconstruction, latent space can be obtained automatically; (b) online phase one - state estimation given

signals; (c) online phase two - signal reconstruction given corresponding states.

those features can be sensitive to various types of damages and potentially useful for damage detection, the
extraction process always require signal processing related domain knowledge and thus can be restricted
and time consuming. In this study, the procedures to process the data before putting them into matrices
are relatively simple, including down sampling, demean and eliminating the cross-talk region.

The core step of the methodology is to compress the data into a latent space, where the complex
dynamics of the raw stochastic signals can be simplified and thus makes it easier for further analysis.
Denote the signal as y ∈ RN , where N is the signal length and state vector as si where i ∈ [1,K], K is
the total number of states. Since there are two state factors, i.e., damage severity and load, in this study,
si = [sj , sh], where j ∈ [1, J ], h ∈ [1, H], J,H are the number of possible choices in each state factor.

Figure 1 panel a schematically outlines the procedure of the train phase of CAE along with its interior
structure. By minimizing the error of the reconstructed signals, the latent space, denoting z ∈ RD, where
D is the latent space dimension, keeps the majority information of the time series. Two different cases
have been tested by extracting various types of latent space, namely time-invariant and time-variant spaces.
The main difference between these two spaces is that the former one contains the information of signals
within a fixed time interval with only a few variables, while the later one has the length same as the signal
and thus can reflect the details of the dynamics. Both cases can be meaningful in practical applications.

For each path, the signal matrix can be stacked as,
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where the superscript denotes multiple measurements of signals and the subscript denotes the correspond-
ing state vector. Then the training input tensor can be expressed as,

Ytot = [Y1. . .YP ] (2)

where P is the total path number. In the two test phases, the tensors are stacked differently. For the former
one, the matrices are stacked vertically, meaning all the signals are placed in parallel, while for the later



one, the matrices are stacked along the path dimension, making it possible to convolve along the paths.
This paper proves their capability of being adopted into two real-world scenarios, which are structure state
prediction and signal reconstruction under given states.

2. State Estimation Given Signals

After training the CAE model, it is trivial to use the encoder and the decoder parts separately. This
means the data can be compressed using encoder and the latent space can be transformed back to signals
using decoder independently. This property leads to the two branches of the test phase, i.e., state estimation
and signal reconstruction. In the first branch, also called test phase one in this work, the feedforward neural
network (FFNN) that has been trained to connect the latent variables to the state vector, i.e., the mapping
of z → s, is integrated as shown in Figure 1 panel b. The structural state of an unknown signal can then
be predicted by passing through the encoder and FFNN sequentially. The mathematical expression can be
written as:

ŝ = φ1(z) = φ1(αyz(Wyzy + byz)) (3)

where φ1 is the ffnn function of test phase one, αyz is the nonlinear function for the encoder, Wyz and
byz are weights and bias for encoder, respectively. 3. Signal reconstruction given states

The second branch as shown in Figure 1 panel c, also named test phase two, works in an opposite
direction, i.e., the mapping of s → z. The FFNN herein takes state vector as input and generate latent
vector results. Then the decoder is applied to construct the signals. The mathematical expression can be
written as:

ŷ = αzy(Wzyz+ bzy) = αzy(Wzyφ2(s) + bzy) (4)

where φ2 is the ffnn function of test phase two, αzy is the nonlinear function for the decoder, Wzy

and bzy are weights and bias for decoder, respectively.

RESULTS

In this work, the proposed scheme has been tested on two test cases. Though the data set is identical
in the two cases, the ways to arrange it are different. To be more specific, stacking signals under different
paths, damage sizes and loads along with different dimensions as CAE inputs results in different matrix
construction methods. The convolution inside the CAE layer is then conducted along various dimensions
and finally leads to time-invariant and time-variant latent spaces. To fit the different methods, the CAE
structures in the test cases are slightly different and the details are recorded in Table I. It has been observed
that both methods can be embedded naturally in the state estimation and signal reconstruction processes
and are meaningful in real-world applications. Under this concern, two test cases have been investigated.

Test Case I: Time-invariant Latent Space

In test case 1, all the available signals under different states are stacked vertically. Since the signal
length has been down sampled from 8,000 to 800, the tensor size herein is Nx800x1, where N is the

TABLE I. DETAILED INFORMATION OF CAES IN BOTH TEST CASES.
CAE in Test Case I CAE in Test Case II
Characteristic Description Characteristic Description
Input Layer Size: (800,1) Input Layer Size: (800,3,3)
Bottleneck Layer Size: 5 Bottleneck Layer Size: (800,7)
1st Conv Layer 1D, Filter Number: 64 1st Conv Layer 2D, Filter Number: 128
2nd Conv Layer 1D, Filter Number: 32 2nd Conv Layer 2D, Filter Number: 64
Optimization Method Adam Optimization Method Adam
Epoch 1000 Epoch 5000
Final Loss 0.248 Final Loss 0.0264
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Figure 2. Model configuration: (a) RMSE with respect to CAE latent space size; (b) RMSE with respect to number
of filters in the first CAE convolutional layer; (c) RMSE with respect to number of FFNN’s hidden layer; (d) RMSE

with respect to number of neurons in FFNN’s hidden layer.

number of all realizations under all states. While training the CAE model, the MSE loss of the signals is
minimized. The latent space from the original data space is compressed automatically. In this test case,
each time series can be compressed into a latent space with very limited user defined size. A complete
CAE model selection process has been done by recording the loss with different model hyperparameters
such as filter size and latent space size. Filter number of the 2nd convolutional layer is set to be half
of the 1st one to further compress the data. According to Figure 2, filter number of the first and second
convolutional layers have been chosen as 64 and 32, respectively, and the latent space size is set to 5. The
epoch is chosen to be 1000, batch size is 32 and the optimization function is Adam. With this setting,
the signal reconstruction functionality performs well with low RMSE. The average RSS/SSS per path is
recorded in Table II. In most cases, the RSS/SSS is within 2%, which means the reconstructed signals are
very similar to the original ones.

The fact that reconstructed time series have negligible error leads to a conclusion that the latent space
as the output of the bottleneck layer contains most of the characteristic information of the original signals.
An advantage of this process is the latent space can be generated automatically while training the CAE,

TABLE II. SUMMARY OF RSS/SSS(%) OF THE RECONSTRUCTED SIGNALS FOR EACH PATH FROM
CAE TRAIN PHASE AND TEST PHASE TWO, RESPECTIVELY IN TEST CASE 1.

Path 1-4 1-5 1-6 2-4 2-5 2-6 3-4 3-5 3-6
Train Phase 0.7966 1.4318 0.9442 1.0459 1.1832 0.9028 1.0746 1.0343 1.1480

RSS/SSS (%)
Test Phase Two 0.7623 1.6238 0.9899 1.1494 1.1447 1.0584 1.0631 1.1584 1.2508
RSS/SSS (%)
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Figure 3. Latent space representation and confusion matrix of state estimation results from test phase one of test case
1: (a) latent space of all states from path 1-4, each color represents for a load condition while each marker shape

represents for a damage level (’·’: level 0; ’−’: level 1; ’+’: level 2; ’×’: level 3; ’⋆’: level 4); (b) latent space of all
states from path 1-6; (c) confusion matrix of damage level predictions from path 1-4 in test case 1; (d) confusion

matrix of damage level predictions from path 1-6 in test case 1.

so signal processing and feature extraction related domain knowledge is not required. The informative
property of the latent representations gives the way to state estimation given raw signals and also signal
reconstruction given only corresponding states.

In the first test phase, the goal is to predict states given a raw piece of signal. Once the CAE is trained,
the encoder part can be used to compress the data. Then the latent space is fed into the trained FFNN
which maps to the states. In this paper, 2 types of states, i.e., damage severity level and load, are estimated
simultaneously. Figure 3 panels a and b show the latent space pair (z3, z4) under all available states from
path 1-4 and 1-6 with all test data, respectively. Different colors represent for different load conditions
while different marker shapes represent for different damage levels. It can be observed from both plots
that under most states, these representations have their own clusters, meaning the differences of signals
under various states can be reflected by the latent variable values. Panels c and d show the confusion
matrix of state estimation during the test phase one of test case I. The fault detection occurs when actual
damage level is at 3 or 4. When looking into the details, it was observed that the majority deviations
happen when the corresponding loads are at 5kN . This observation can be explained though the overlap
of markers of damage level 3 and 4 represented by ’×’ and ’⋆’, respectively, with cyan color in panel a.
A similar situation is observed when comparing panels b and d where the overlap of the two markers at
5kN still occurs. The load estimation, on the other hand, gives 100% accuracy, which can be verified that
the markers in panels a and b with different colors have their own well-separated clusters.

In the second test phase, latent space variables are estimated though the second FFNN given states
as inputs. Then the results are passed into decoder to get reconstructed signals. Figure 4 panels a and b
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Figure 4. Results of test phase two in test case I: (a) comparison of reconstructed and original signals under damage
level 0, load 0kN from path 1-4; (b) comparison of reconstructed and original signals under damage level 4, load

20kN from path 1-6; (c) average RSS/SSS(%) w.r.t each damage level per path from test case I; (b) average
RSS/SSS(%) w.r.t each load per path from test case I.

(a) (b)

Figure 5. (a) Time-variant latent space under different damage conditions extracted from test case II; (b) Confusion
matrix of damage level predictions from test phase one in test case II.

show two examples of reconstructed and original signals. The first one is under damage level 0, load 0kN
from path 1-4 while the second is under damage level 4, load 20kN from path 1-6. Again, low RMSE
and RSS/SSS are achieved. The overall average signal reconstruction results for each path are shown in
panels c and d, with respect to damage level and load, respectively. From which, RSS/SSS(%) remains at
low values, validating the performance of this test phase.

Test Case II: Time-variant Latent Space

In the second test case, time series from the same path are first stacked together. Then each matrix is
stacked along the third and fourth dimension. For all the damage sizes and loads, there are 410 realizations
from each path, leading to a tensor with dimension of 410×800×3×3, where the last two dimensions are
derived from the 9 paths in this work. Note the second dimension is with respect to time in this case,
which is the precondition of the latent space being time-variant.
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Figure 6. Results of test phase two in test case II: (a) comparison of reconstructed and original signals under damage
level 0, load 0kN from path 1-4; (b) comparison of reconstructed and original signals under damage level 4, load
20kN from path 1-6; (c) average RSS/SSS(%) w.r.t each damage level per path from test case II; (b) average

RSS/SSS(%) w.r.t each load per path from test case II.

Similar to test case I, the model configuration is first optimized based on the validation loss. The CAE
model still has two convolutional layers in both encoder and decoder yet modifications need to be done to
fit the new data set. For the best performance, the latent space size is chosen to be 7 and filter sizes are
128 and 64 in the first and second convolutional layer, respectively. In this work, the total path number
is limited and the computational cost is not decreased dramatically. However, when dealing with more
paths such as in numerical models using this scheme can convolve paths significantly and thus improve
the efficiency.

The latent space representations under all damage levels are shown in Figure 5 panel a. It can be
observed that the signals after convolution and compression is time-variant. Unlike test case I, the latent
expressions herein can not be interpreted intuitively. Yet the damage level estimation results of path 1-4
from panel b still exhibit a relatively high accuracy. In test phase two, the FFNN is modified in a similar
manner and the overall accuracy of the reconstructed signals is recorded in Table III. Again, the signals
again can be reconstructed with acceptable accuracy.

CONCLUSION

In this study, a CAE and FFNN based active-sensing SHM scheme has been proposed for damage

TABLE III. SUMMARY OF RSS/SSS(%) OF THE RECONSTRUCTED SIGNALS FOR EACH PATH FROM
CAE TRAIN PHASE AND ONLINE PHASE TWO, RESPECTIVELY IN TEST CASE 2.

Path 1-4 1-5 1-6 2-4 2-5 2-6 3-4 3-5 3-6
Train Phase 1.1239 1.0436 0.7663 0.8338 0.9492 0.6535 0.6577 0.6992 1.2882

RSS/SSS (%)
Online Phase Two 1.0730 1.3348 1.0103 1.0221 1.1665 0.8892 0.9045 0.9558 1.4392

RSS/SSS (%)



quantification and signal reconstruction tasks under multi-variant states. Time series collected by PZTs
attached on an Al plate, after simple processing procedures, are fed directly into the CAE to obtain re-
constructed signals. Time-variant and time-invariant latent space can be achieved by constructing input
tensors along different directions. The latent space is then connected with multi-variable state vectors
using FFNN. Then state can be estimated given raw signals and signals can be generated given only state
information. In both test cases, the damage quantification accuracy is satisfied and the signals can be
reconstructed with low RMSE and RSS/SSS values.
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