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ABSTRACT

Bridge health monitoring (BHM) is important due to its benefits in detecting and
diagnosing potential damages to bridges, providing early warning signals, and guid-
ing maintenance decisions. Compared to manual inspection and fixed-sensors-based
monitoring, drive-by BHM leverages vibration responses measured from vehicles pass-
ing over bridges to indirectly diagnose bridge damages, offering a rapid, mobile, and
economical complementary solution. However, vehicle-bridge interaction (VBI) sys-
tems have large variations in bridge configurations, vehicle suspension systems, driving
speeds, and so on, making it challenging to develop a damage diagnosis algorithm that is
robust to vehicle-bridge variability. Moreover, existing approaches often require vehicle
speed within a specific range to provide both informative and reliable signals, limiting
their practical applications.

To address these challenges, we introduce a damage diagnosis approach that extracts
damage-sensitive features and enhances their robustness to vehicle-bridge variability
through physics-informed signal decomposition. Our approach first pre-processes and
decomposes the vehicle vibration signal using the synchro-squeezed wavelet transform
(SWT) because of its anti-noise property and its ability to represent the non-stationary
and time-varying signals from drive-by vehicles. Then, a damage-sensitive signal is
reconstructed using the inverse SWT within a physics-informed frequency band which
excludes the vehicle and bridge resonances while keeping the damage-sensitive informa-
tion. Peak features, such as peak location and energy, are input to the Gaussian Mixture
Model clustering algorithm for diagnosing bridge damage in an unsupervised fashion.
The performance of the proposed approach is evaluated on a numerical VBI model,
which includes three vehicle types, six bridge lengths, and three bridge cross-sections,
and takes into consideration the variability in vehicle properties and speed. The results
validate that the extracted features are damage-sensitive and robust to various vehicle-
bridge systems, achieving an overall mean absolute percentage error of 0.78% for dam-
age localization and 13.13% for damage quantification.
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INTRODUCTION

Bridge health monitoring (BHM) enables us to send out early warning signals for
bridges under abnormal health conditions and guides maintenance, repair, and manage-
ment decisions. Currently, bridge assessment is mainly conducted by manual inspection
and conventional fixed-sensor-based BHM, but both methods have limitations. Man-
ual inspection can be costly and subjective as it relies on specific engineers for regular
assessments, while fixed-sensor-based BHM is generally inefficient due to the high la-
bor costs, economic expenses, and potential traffic disruptions [1]. To overcome these
limitations, drive-by BHM was introduced to offer a mobile, scalable, and economical
solution since each vehicle can be utilized for multiple bridges without additional sensor
installation or manual labor on every bridge [2, 3].

Previous works on drive-by BHM can be mainly categorized into modal parameters
extraction and data-driven methods [4]. Existing modal-parameter-based approaches
mainly focused on modal frequencies and damping ratios [2,5]. However, these ap-
proaches have limitations in accurately identifying the location and extent of damage
because modal frequencies and damping ratios can be influenced by both damage and
environmental and operational conditions. Alternatively, mode shapes and their curva-
ture have been proposed as potential damage-sensitive parameters. However, they are
also sensitive to noise and require high spatial resolution of the measurement, which
increases the complexity of the damage identification process [6].

Data-driven and machine-learning methods have emerged as effective alternatives
to modal-parameter-based approaches for damage localization and quantification, with
various damage-sensitive features being proposed [7]. Nevertheless, one main limitation
of these methods is the requirement for a sufficient labeled training dataset, which can
be difficult to obtain due to the scarcity of damaged bridges in the real world.

To this end, the combination of data-driven and physics-based approaches can lead
to effective damage diagnosis by integrating physics laws and constraints into signal
processing and machine learning methods [4]. However, existing works are insufficiently
robust in addressing the variability of vehicle-bridge systems, including different vehicle
and bridge configurations and properties. Moreover, these approaches often rely on a
specific range of vehicle speeds to generate informative and reliable signals, which may
pose practical challenges in their implementation.

To tackle the aforementioned challenges, we introduce a new damage diagnosis ap-
proach robust to vehicle-bridge variability for drive-by BHM based on physics-informed
signal decomposition. Specifically, the vehicle vibration signal is initially pre-processed
and decomposed in the time-frequency domain to track the vehicle location using synchro-
squeezed wavelet transform (SWT). SWT is chosen because of its ability to effectively
capture non-stationary and time-varying signals produced by drive-by vehicles, as well
as its anti-noise capability. Then, a damage-sensitive signal is reconstructed by com-
puting the inverse SWT of the decomposed time-frequency signal within a specific fre-
quency band informed by the physics derivation of the vehicle-bridge interaction (VBI)
system. This frequency band excludes the vehicle and bridge resonances and highlights
the damage information, which improves the robustness of our approach to vehicle-
bridge variability. Damage location and severity are estimated by extracting key peak
features such as the peak location, amplitude, energy, width, and slope from the re-



constructed signal, and importing them to Gaussian Mixture Model clustering, which
provides insights into the outcome labels through probabilistic distribution in an unsu-
pervised fashion [8].

Our approach is evaluated on a numerical VBI simulation, which includes three ve-
hicle types, six bridge lengths, and three bridge cross-sections. The simulation also takes
into account variability in vehicle properties, such as vehicle speed, mass, and damping
ratio. This study considers various damage scenarios, including two damage locations
and three damage severities modeled by stiffness reductions. Our approach achieves a
mean absolute percentage error (MAPE) of 0.78% for damage localization and 13.13%
for damage quantification across various vehicle and bridge configurations, demonstrat-
ing its potential for adaptability to different VBI systems. It is also capable of damage
diagnosis with varying vehicle speeds, making it more practical for real-world imple-
mentation without the need for a specific speed range.

BRIDGE DAMAGE DIAGNOSIS THROUGH PHYSICS-INFORMED SIGNAL
DECOMPOSITION

This section presents our bridge damage diagnosis approach that extracts robust and
damage-sensitive features using a physics-informed signal decomposition method. The
approach consists of three phases (as outlined in Figure 1), which are described in the
following subsections.

Vehicle Vibration Signal Pre-Processing and Time-Frequency Representation

This section describes a two-step pre-processing of the drive-by vehicle vibration
signals. In the first step, the vibration signals are normalized by dividing them by their
corresponding vehicle velocity. This normalization is conducted to eliminate the effect
of the vehicle velocity on the signal amplitude (e.g., the faster the vehicle, the larger
the signal amplitude.) Then, a Hanning window function is multiplied with the signal
to reduce the amplitude of the discontinuities at the boundaries of each finite sequence
(i.e., reduce the spectral leakage).

In the second step, SWT is used to decompose the pre-processed drive-by vehicle
vibration signal into the time-frequency domain, which contains the damage-sensitive
information of the damage location and severity [9]. Compared to conventional wavelet
transform methods, SWT represents the non-stationary drive-by vehicle vibration signal
as a superposition of intrinsic mode function components, extracts high-precision time-
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Figure 1. The flowchart of our bridge damage diagnosis approach through physics-informed
signal decomposition.



frequency curves through energy reassignment and wavelet coefficient squeezing, and
therefore offers a more accurate representation of the signal’s time-frequency character-
istics [4]. Moreover, SWT has been shown to be more robust to noise, thereby offering
enhanced reliability for damage detection in various VBI systems which may be exposed
to different environmental conditions [10].

Robust and Damage-Sensitive Signal Reconstruction Based on Physics Derivation
of the Vehicle-bridge Interaction System

This section studies the dynamic interaction between a bridge and a moving vehicle
to provide physical insights for reconstructing a damage-sensitive signal proportion from
the pre-processed drive-by vehicle vibration signal. This signal reconstruction phase
reduces the vehicle-bridge variability and highlights the damage-sensitive information
by minimizing the effects of vehicle and bridge resonances. Specifically, the bridge
and the moving vehicle are considered two elastic structures characterized by distinct
vibration frequencies and are coupled together through interaction forces at the contact
points. With omitting the damping and assuming the mass of the vehicle is far less
than the bridge’s, the closed-form solution of the drive-by vehicle vertical acceleration
is attained and separated into three terms [4]:
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where C',, Cs,, Cs3,, Cy, and Cs, are constants depending on material and geometry
properties of the VBI system; w, = 27 f, is the bridge frequency at the n'* mode,
w, = 2 f, is the natural frequency of the vehicle.

The dominant frequency of each term in Eq (1) is vehicle frequency, bridge frequen-
cies, and the instantaneous frequencies of mode shapes, respectively. Specifically, the

dominant frequencies of the third term y; = >0 | Cs, [, (vt)d(vt) + ¢, (vt)?], can

be approximated by the driving frequency wq,, = *7* = 27 fq, forn = 1,..., which
are not affected by the bridge and vehicle resonances. y, contains the multiplications

of the mode shape derivatives, which amplifies the damage information included in the
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the bridge stiffness, m, is the vehicle mass, and g is the gravitational acceleration. Cy,
is less susceptible to degradation as the number of modes (n) increases, resulting in
the higher mode components of y,; having a larger amplitude compared to other terms.
Therefore, y, is both damage-sensitive and robust to vehicle-bridge variability, and it can
be specified by selecting an appropriate frequency band that only includes f;,,.

To this end, a robust damage-sensitive signal is reconstructed from the decomposed
time-frequency SWT components by computing the inverse SWT within a specified fre-
quency band: f;. This frequency band includes the driving frequencies: f;, € f, and
excludes the bridge and vehicle frequencies: f,, f, € fs.

mode shape functions [4,6]. Additionally, Cs,, = ; where k,, is



Damage Diagnosis Based on Gaussian Mixture Model Clustering Algorithm

This section presents the third phase of our bridge damage diagnosis approach, which
estimates damage location and severity using the Gaussian Mixture Model (GMM) clus-
tering algorithm. Firstly, the peak features of the reconstructed damage-sensitive signal
are calculated. These features include the peak location, amplitude, energy, prominence
width, and slope. The peak slope is defined as the ratio of the peak prominence height
and width. Figure 2 (a) shows an example of the reconstructed damage-sensitive signal
interpolated to the spatial domain along the bridge having local damage at the mid-span
(i.e., damage at 16.5 m for a 33 m bridge). The damage location is estimated directly
using the spatial coordinate of the peak wave.

Furthermore, the peak amplitude is sensitive to both the damage severity level and
noise, and therefore, estimating damage severity solely relies on the peak amplitude is
not reliable. For instance, Figures 2 show the reconstructed damage-sensitive signals of
two drive-by vehicle vibrations due to (a) the damage and (b) the signal noise without
damage. It can be observed that both of the two signals have a peak wave. However,
the reconstructed signal with bridge damage has a larger ratio between the prominence
amplitude and the prominence wide. Consequently, multiple peak features, such as am-
plitude, energy, prominence width, and slope, are input to a Gaussian Mixture Model
(GMM) clustering algorithm for achieving more accurate damage severity quantifica-
tion. The GMM clustering algorithm is used because it offers probabilistic distributions
of damage severity estimations, providing valuable insights even in cases where the clus-
ter boundaries are ambiguous [8]. Additionally, its unsupervised nature minimizes the
need for extensive manual data labeling, enhancing its practicality for damage diagnosis.

EVALUATION ON NUMERICAL VBI MODELS

Our approach is evaluated on a numerical VBI simulation introduced in [11]. This
section presents the data description and our evaluation results.

Data Description
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Figure 2. Example of reconstructed damage-sensitive signals of two drive-by vehicle vibrations
due to (a) the damage at mid-span and (b) the signal noise without damage. Both of the two
signals have a peak wave, but their peaks have different features.



The simulated dataset includes various VBI systems, including six bridges with dif-
ferent lengths (9m, 15m, 21m, 27m, 33m, and 39m) and cross-sections (T beam, Y beam,
and Super-Y beam), and three vehicle types (one-axial oscillators, two-axial sedans, five-
axial trucks). The main body of the vehicle is modeled as a rigid body, while the axles are
represented as lumped masses. The body and axles are interconnected using spring and
dashpot systems that represent the suspensions. The bridge is modeled as a simply sup-
ported beam. The vehicle properties, including body and axle mass, stiffness, and damp-
ing of the suspension system, are randomly sampled based on the given statistical varia-
tion (i.e. maximum, minimum, and standard deviation). There are six damage scenarios,
consisting of three damage severities (undamaged, 20% stiffness reduction of a 0.5-meter
beam element, 40% stiffness reduction of a 0.5-meter beam element) and two damage
locations (damage at quarter-span or mid-span). For each scenario, 400 events with ran-
dom vehicle properties are generated, and each event contains the vertical acceleration
response from both the wheel and main body with a sampling period of 0.0038 seconds.
In total, our dataset consists of 6 (bridges) x 3 (vehicle types) X2 (damage location) x
3 (damage severity) x 400 (events) = 43,200 (data samples). Details of this dataset
can be found in [11].

Drive-by vehicle vibration signals from the unsprung wheels are used for damage
diagnosis because the wheels are in contact with the bridge, and their vibrations contain
more bridge information compared to the sprung body vibrations. Moreover, for two-
axial sedans and five-axial trucks, signals from different wheels are shifted in the spatial
domain to the same contact location to account for the vehicle wheelbase length. This
process allows us to utilize signals from all wheels, which amplifies the extracted damage
information.

Results and Discussion

Our approach achieves an overall 0.78% mean absolute percentage error (MAPE)
for damage localization and 13.13% MAPE for damage quantification of the six bridges
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Figure 3. Reconstructed damage-sensitive signals for different damage locations and vehicle con-
figurations, including (a) one-axial oscillators and (b) two-axial sedans, and (c) five-axial trucks.
Damage localization results using our approach are robust to different vehicle configurations.



and three vehicle configurations. The damage diagnosis results for different bridge con-
figurations using one-axial oscillators are summarized in Table I. The average MAPE is
0.76% for localization and 14.19% for quantification across bridges of varying lengths
and cross sections, demonstrating its scalability and robustness to different bridge sys-
tems. The damage location can be indicated by the distance coordinate of the peak
wave, as shown in Figure 3. Note that damage localization and quantification results
for shorter bridges are less accurate than those for longer bridges. This could be be-
cause shorter bridges generally have a higher mode density, meaning that there are more
closely spaced natural frequencies compared to longer bridges which may result in more
challenging identification and separation of individual modes in the damage-sensitive
frequency band selection process.

The damage diagnosis results for different vehicle configurations on bridge B6 (39
m with Super-Y beam) are presented in Table II. An average MAPE of 0.83% in local-
ization and 10.99% in quantification is achieved. The reconstructed vibration signals,
as illustrated in Figure 3, showcase a precise and distinct representation of the damage-
sensitive peak wave across V1, V2, and V5, demonstrating the approach’s robustness in
handling different vehicle configurations. For damage quantification, the error is notably
lower for two-axle sedans compared to one-axle oscillators. This improvement can be
attributed to the utilization of vibration signals from multiple wheels, which provides
more damage information. However, the error is relatively larger for five-axle trucks,
potentially due to the complexity of the truck’s motion, where the truck’s vertical vibra-
tions include the rotational components of the tractor and trailer.

TABLE I. DIAGNOSIS RESULTS FOR DIFFERENT BRIDGE CONFIGURATIONS.

| B1 | B2 | B3 | B4 | B5 | B6
Bridge length 9m 1 m | 2lm | 27m | 33m | 39m

Bridge cross section Y Y SY SY
Damage localization MAPE (%) | 0.82 | 0.78 | 0.77 | 0.79 | 0.76 | 0.63
Damage quantification MAPE (%) | 15.26 | 14.93 | 13.96 | 14.63 | 13.79 | 12.62

T: T beam; Y: Y beam; SY: Super-Y beam.

TABLE II. DTAGNOSIS RESULTS FOR DIFFERENT VEHICLE CONFIGURATIONS.

| V1 | V2 | V5

0.63 .65 1.21
13.25

Damage localization MAPE (%)
Damage quantification MAPE (%) | 12.62

V1: one-axial oscillators; V2: two-axial sedans; V5: five-axial trucks.



CONCLUDING REMARKS

In this paper, a robust drive-by BHM approach is introduced to diagnose bridge
damage with large vehicle-bridge variability. The synchro-squeezed wavelet transform
(SWT) method is used to pre-process the drive-by vehicle vibration signal and represent
it in the time-frequency plane. A damage-sensitive signal is reconstructed by computing
the inverse SWT within a physics-informed frequency band. This frequency band ex-
cludes the vehicle and bridge resonant frequencies to reduce the effects of vehicle-bridge
variability and amplifies the damage information in the pre-processed vibration signal.
Damage diagnoses are performed using peak features of the reconstructed signal, which
are informative to the damage location and severity. Our approach achieves an overall
0.78% MAPE for damage localization and 13.13% MAPE for damage quantification of
six bridges and three vehicle configurations.
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