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ABSTRACT

Potholes pose significant safety risks to drivers and cause damage to vehicles. This
paper modified a novel approach called the monocular depth estimation and
segmentation (modified 3DPredicNet) network [1] to accurately estimate depth maps
and segment potholes. To facilitate model training and evaluation, a comprehensive
dataset consists of RGB images captured using a DSLR camera and corresponding 3D
scan data for generating depth maps. The depth maps derived from the 3D scans are
utilized for pothole depth estimation, while masks are used for pothole segmentation.
The evaluation results reveal the model's ability to accurately predict and segment
potholes in RGB images, achieving a minimum absolute relative error (ARel) 0of 0.062,
square relative error (SRel) of 0.011, and root mean square error (RMSE) of 0.118 when
tested on the newly developed dataset. Moreover, when tested on the newly developed
dataset, the model demonstrates good pothole segmentation performance, attaining a
high mean intersection over union (mloU) of 81.05. Furthermore, when utilizing the
publicly available dataset, the modified 3DPredicNet achieved accurate depth
estimation with ARel of 0.093 and SRel of 0.033.

INTRODUCTION

Road infrastructure plays a vital role in our everyday lives, exerting a profound
influence on the development and well-being of city dwellers [1]. The quality of
pavement holds immense significance in this context. As time progresses, the pavement
undergoes distress, encompassing a range of issues including potholes. These
deteriorations stem from a multitude of factors, including but not limited to, traffic
loads, weather conditions, construction anomalies, subgrade soil properties, and
insufficient maintenance measures. Among these concerns, potholes emerge as a
particularly vexing problem, arising from a complex interplay of circumstances [2].
When moisture infiltrates beneath the pavement, it undergoes expansion and contraction
during freezing and thawing cycles. Consequently, weakened sections cave under the
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weight of passing vehicles, giving rise to potholes, making driving and pedestrian
movement uneasy, exposing vehicles to potential damage, and serious accidents [3].
Therefore, regular inspections are crucial to ensure road safety by promptly identifying
and addressing potential hazards.

Despite the drawbacks, many transportation departments still rely on traditional
methods for pavement inspection. In recent years, extensive research has been
dedicated to the development of deep learning-based methods for damage detection in
the field of structural health monitoring (SHM). Cha et al. (2017) proposed a
convolutional neural network (CNN)-based approach for crack detection,
demonstrating promising outcomes [4]. Subsequently, they extended their methodology
to detect multiple types of damage using a faster region-based convolutional neural
network [5]. Kang and Cha (2018) employed autonomous unmanned aerial vehicles for
concrete damage detection, expanding the applicability of the approach [6]. Building on
this achievement, they further refined the method and successfully applied it to the
assessment of steel bridges and parkade structures [7, 8]. In addition, other research
endeavors have concentrated on investigating diverse methodologies for pixel-level
damage detection, such as SDDNet [9] and STRNet [10] for surface damage detection,
and IDSNet for subsurface damage detection [11-13]. Moreover, thermography was
integrated with deep learning techniques to effectively detect subsurface damage in steel
bridges [11], and concrete structures [12], as demonstrated in several recent studies as
well as for crack in tunnel structures. Additional studies have been conducted in the
field of deep learning, focusing on various applications in different environments.
Specifically, one study [14] explored deep learning-based damage detection in complex
environments, while other studies [15, 16] investigated deep learning techniques for
noise control in noisy environments. Furthermore, researchers developed a dual
encoder-decoder-based deep polyp segmentation network specifically designed for
colonoscopy images [17]. In a separate study, an unsupervised deep auto-encoder
combined with a one-class support vector machine was proposed for damage detection
[18]. Lastly, volumetric damage quantification was addressed in multiple studies [19,
20].

Additionally, in a previous study, a novel approach was introduced, utilizing
vehicle-mounted dual scanners to capture 3D surface data for effective pothole
identification [21]. However, real-time detection capabilities were not achieved with
this method. Alternatively, laser systems based on the time-of-flight principle have been
employed for pothole detection, although these techniques can be costly and susceptible
to environmental lighting variations [22]. Some studies have explored the combination
of laser and image-based methods, but practical considerations such as expense and
sensitivity to lighting conditions arise. Moreover, considerable research has been
dedicated to pothole detection and segmentation, the inclusion of depth mapping is vital
for accurately assessing the severity of damage. In this study, a diverse data was
gathered using a DSLR camera and a 3D scanner [23] to effectively train the modified
3DPredicNet. The paper is structured as follows: Section 2 provides a comprehensive
explanation of the proposed methodology. Section 3 encompasses the analysis and
evaluation of the obtained results, shedding light on their significance. Finally, Section
4 concludes the study, offering insights into potential future opportunities of exploration
and development.



METHODOLOGY

The proposed method [1] consists of several key steps for predicting pothole depth
maps and performing pothole segmentation using RGB images. The overall proposed
methodology is presented in Figure 1.
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Figure 1. Flowchart of the proposed method
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The first step is data acquisition, where a 3D scanner [23] is used to capture a 3D
dense map of the environment, while an RGB camera collects RGB data with and
without wooden frames. Following data acquisition, the collected data undergoes data
pre-processing. The VXelements software is employed for this purpose. The 3D scans
obtained from the 3D scanner are processed using software to obtain a clean and refined
3D scan. Additionally, the depth maps derived from the 3D scans are processed to
generate depth maps. This pre-processing step ensures that the data is in an optimal form
for model training. The next step in the methodology is training a newly developed
model called modified 3DPredicNet. This model is trained using two datasets: a newly
developed dataset, as shown in Table I, and the Pothole600 dataset, as shown in Table
I1. These datasets consist of RGB images, pothole depth maps, and segmentation masks.

TABLE |. NEWLY DEVELOPED DATASET

Dataset Training  Validation  Test Image size Total
RGB 300 50 50 1200 x 800 400
Depth map 300 50 50 1200 x 800 400
Mask 300 50 50 1200 x 800 400
TABLE Il. POTHOLE600 DATASET

Dataset Training  Validation  Test Image size Total
RGB 240 180 180 400 x 400 600
Depth map 240 180 180 400 x 400 600
Mask 240 180 180 400 x 400 600




The RGB images provide visual information, while the pothole depth maps and
segmentation masks serve as ground truth labels for the depth and segmentation
predictions, respectively. Through the training process, the modified 3DPredicNet
model learns the underlying correlations between RGB images and the corresponding
pothole depth maps and segmentation masks. Once the training is completed, the trained
modified 3DPredicNet model is ready for testing. In the testing phase, an RGB image
is inputted to the model. The model then predicts the monocular pothole depth map,
which estimates the depth information of the potholes present in the image.
Additionally, the model performs pothole segmentation, accurately identifying and
delineating the pothole regions within the image.

Modified 3DPredicNet

The modified 3DPredicNet [1] is specifically designed to predict the depth map and
segmentation mask of potholes from a single RGB image. The overall architecture of
the network is depicted in Figure 2. It incorporates several key components to
effectively capture and utilize the relevant features within the image. The network
architecture begins with a convolution block (Conv block) that applies convolutional
layers to the input RGB image, resulting in feature maps with reduced spatial
dimensions (H/2, W/2, D=16). The feature maps obtained from the convolution block
are then passed through the residual intensive convolution modules (RICM) block. The
RICM block further enhances the extracted features by leveraging residual connections
and intensive convolution operations. This block helps in capturing both low level and
higher-level representations and context information. After the RICM block, the feature
maps are fed into a depth-wise separable convolution block (DSC).

The DSC block is specifically designed to reduce the number of parameters in the
network while maintaining spatial information. It achieves this by separating the
convolution process into depth-wise convolutions and point-wise convolutions, thereby
optimizing the network’s efficiency. To further enhance the network's performance, dual
attention modules (DAM) are incorporated. The DAM module helps the network to
focus on relevant spatial and channel-wise features by applying attention mechanisms.
Both downsampling and upsampling operations are utilized in the network.
Downsampling is performed to reduce the spatial dimensions of the feature maps, while
upsampling is employed to restore the dimensions to the original size.
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Figure 2. Modified 3DPredicNet
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These operations help in capturing multi-scale information and preserving fine
details during the prediction process. The network architecture involves the repetition
of certain components to ensure effective feature extraction and information flow.
Specifically, the feature maps pass through the DAM upsampling and DSC once again,
allowing for additional refinement of the features. By incorporating these various
components, the modified 3DPredicNet architecture is designed to effectively predict
the depth map and segmentation mask of potholes from a single RGB image.

ANALYSIS

In this section, the performance of the proposed modified 3DPredicNet is assessed
on both a newly developed pothole dataset as shown in Figure 3 and a publicly available
dataset as shown in Figure 4 and 5 [24]. Figure 3 illustrates the input RGB image fed
(Figure 3a) into the network, along with its corresponding segmentation (Figure 3b) and
depth map (Figure 3c). The evaluation results demonstrate that the proposed method
achieves a mean intersection over union (mloU) of 81.05. Furthermore, the modified
3DPredicNet achieved a minimum absolute relative error of 0.062, a square relative
error of 0.011, and a root mean square error of 0.118. These results show the
effectiveness and reliability of the proposed methodology in accurately predicting and
segmenting potholes in images.
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Figure 3. Pothole segmentation and depth map estimation using RGB image input of newly
developed dataset

Figure 4 shows the outcomes of pothole segmentation using RGB image inputs
(Figure 4a) from the Pothole600 dataset. The ground truth (Figure 4b) and segmentation



output (Figure 4c) produced by the model are presented, illustrating the effectiveness of
the proposed method. Three distinct RGB images depicting small potholes were fed into
the trained model. The evaluation of the segmentation task on RGB input images
resulted in an mloU score of 71.90.
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Figure 4. Pothole segmentation using RGB image input of Pothole600 dataset

Figure 5 presents the results of depth map estimation achieved by utilizing RGB
images (Figure 5a) trained on the Pothole600 dataset. The depth maps generated by the
model are compared with their corresponding ground truth data. The evaluation metrics
used to assess the accuracy of the depth map estimation include an Absolute Relative
Difference (ARel) of 0.093, a Scale Relative Difference (SRel) of 0.033, a Root Mean
Squared Error (RMSE) of 0.191, and a logarithmic Root Mean Squared Error
(RMSElog) of 0.0641. The presented results provide quantitative measures indicating
the model's performance in estimating accurate depth maps. These findings validate the
effectiveness of the proposed method for depth map estimation using RGB images from
the Pothole600 dataset.
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Figure 5. Depth map estimation using RGB image input from the Pothole600 dataset.

CONCLUSION

The modified 3DPredicNet [1] was tested further to measure its performance on
additional data. The model was tested on both a newly developed pothole dataset and a
publicly available dataset, demonstrating its effectiveness in various scenarios. The
evaluation results revealed that the modified 3DPredicNet with 2.79 million paramters
achieved mloU of 81.05, indicating accurate segmentation performance when tested on
newly developed dataset. Moreover, the model achieved a minimum ARel of 0.062,
SRel of 0.011, and RMSE of 0.118. These results indicate the model's ability to
accurately predict and segment potholes in RGB images. The evaluation of the depth
map estimation using RGB images trained on the Pothole600 dataset further showcased
the capabilities of the modified 3DPredicNet. The model achieved a ARel of 0.093 and
SRel of 0.033 demonstrating accurate depth estimation.
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