
ABSTRACT 

Potholes pose significant safety risks to drivers and cause damage to vehicles. This 
paper modified a novel approach called the monocular depth estimation and 
segmentation (modified 3DPredicNet) network [1] to accurately estimate depth maps 
and segment potholes. To facilitate model training and evaluation, a comprehensive 
dataset consists of RGB images captured using a DSLR camera and corresponding 3D 
scan data for generating depth maps. The depth maps derived from the 3D scans are 
utilized for pothole depth estimation, while masks are used for pothole segmentation. 
The evaluation results reveal the model's ability to accurately predict and segment 
potholes in RGB images, achieving a minimum absolute relative error (ARel) of 0.062, 
square relative error (SRel) of 0.011, and root mean square error (RMSE) of 0.118 when 
tested on the newly developed dataset. Moreover, when tested on the newly developed 
dataset, the model demonstrates good pothole segmentation performance, attaining a 
high mean intersection over union (mIoU) of 81.05. Furthermore, when utilizing the 
publicly available dataset, the modified 3DPredicNet achieved accurate depth 
estimation with ARel of 0.093 and SRel of 0.033. 

INTRODUCTION 

Road infrastructure plays a vital role in our everyday lives, exerting a profound 
influence on the development and well-being of city dwellers [1]. The quality of 
pavement holds immense significance in this context. As time progresses, the pavement 
undergoes distress, encompassing a range of issues including potholes. These 
deteriorations stem from a multitude of factors, including but not limited to, traffic 
loads, weather conditions, construction anomalies, subgrade soil properties, and 
insufficient maintenance measures. Among these concerns, potholes emerge as a 
particularly vexing problem, arising from a complex interplay of circumstances [2]. 
When moisture infiltrates beneath the pavement, it undergoes expansion and contraction 
during freezing and thawing cycles. Consequently, weakened sections cave under the 
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weight of passing vehicles, giving rise to potholes, making driving and pedestrian 

movement uneasy, exposing vehicles to potential damage, and serious accidents [3]. 

Therefore, regular inspections are crucial to ensure road safety by promptly identifying 

and addressing potential hazards. 

Despite the drawbacks, many transportation departments still rely on traditional 

methods for pavement inspection.  In recent years, extensive research has been 

dedicated to the development of deep learning-based methods for damage detection in 

the field of structural health monitoring (SHM). Cha et al. (2017) proposed a 

convolutional neural network (CNN)-based approach for crack detection, 

demonstrating promising outcomes [4]. Subsequently, they extended their methodology 

to detect multiple types of damage using a faster region-based convolutional neural 

network [5]. Kang and Cha (2018) employed autonomous unmanned aerial vehicles for 

concrete damage detection, expanding the applicability of the approach [6]. Building on 

this achievement, they further refined the method and successfully applied it to the 

assessment of steel bridges and parkade structures [7, 8]. In addition, other research 

endeavors have concentrated on investigating diverse methodologies for pixel-level 

damage detection, such as SDDNet [9] and STRNet [10] for surface damage detection, 

and IDSNet for subsurface damage detection [11-13]. Moreover, thermography was 

integrated with deep learning techniques to effectively detect subsurface damage in steel 

bridges [11], and concrete structures [12], as demonstrated in several recent studies as 

well as for crack in tunnel structures. Additional studies have been conducted in the 

field of deep learning, focusing on various applications in different environments. 

Specifically, one study [14] explored deep learning-based damage detection in complex 

environments, while other studies [15, 16] investigated deep learning techniques for 

noise control in noisy environments. Furthermore, researchers developed a dual 

encoder-decoder-based deep polyp segmentation network specifically designed for 

colonoscopy images [17]. In a separate study, an unsupervised deep auto-encoder 

combined with a one-class support vector machine was proposed for damage detection 

[18]. Lastly, volumetric damage quantification was addressed in multiple studies [19, 

20]. 

Additionally, in a previous study, a novel approach was introduced, utilizing 

vehicle-mounted dual scanners to capture 3D surface data for effective pothole 

identification [21]. However, real-time detection capabilities were not achieved with 

this method. Alternatively, laser systems based on the time-of-flight principle have been 

employed for pothole detection, although these techniques can be costly and susceptible 

to environmental lighting variations [22]. Some studies have explored the combination 

of laser and image-based methods, but practical considerations such as expense and 

sensitivity to lighting conditions arise. Moreover, considerable research has been 

dedicated to pothole detection and segmentation, the inclusion of depth mapping is vital 

for accurately assessing the severity of damage. In this study, a diverse data was 

gathered using a DSLR camera and a 3D scanner [23] to effectively train the modified 

3DPredicNet. The paper is structured as follows: Section 2 provides a comprehensive 

explanation of the proposed methodology. Section 3 encompasses the analysis and 

evaluation of the obtained results, shedding light on their significance. Finally, Section 

4 concludes the study, offering insights into potential future opportunities of exploration 

and development. 

 

 



METHODOLOGY 

 

The proposed method [1] consists of several key steps for predicting pothole depth 

maps and performing pothole segmentation using RGB images. The overall proposed 

methodology is presented in Figure 1. 

 

 
Figure 1. Flowchart of the proposed method 

 

The first step is data acquisition, where a 3D scanner [23] is used to capture a 3D 

dense map of the environment, while an RGB camera collects RGB data with and 

without wooden frames. Following data acquisition, the collected data undergoes data 

pre-processing. The VXelements software is employed for this purpose. The 3D scans 

obtained from the 3D scanner are processed using software to obtain a clean and refined 

3D scan. Additionally, the depth maps derived from the 3D scans are processed to 

generate depth maps. This pre-processing step ensures that the data is in an optimal form 

for model training. The next step in the methodology is training a newly developed 

model called modified 3DPredicNet. This model is trained using two datasets: a newly 

developed dataset, as shown in Table I, and the Pothole600 dataset, as shown in Table 

II. These datasets consist of RGB images, pothole depth maps, and segmentation masks. 

 
TABLE I. NEWLY DEVELOPED DATASET 

Dataset Training Validation Test Image size Total 

RGB 300 50 50 1200 × 800 400 

Depth map 300 50 50 1200 × 800 400 

Mask 300 50 50 1200 × 800 400 

 

 
TABLE II. POTHOLE600 DATASET 

Dataset Training Validation Test Image size Total 

RGB 240 180 180 400 × 400 600 

Depth map 240 180 180 400 × 400 600 

Mask 240 180 180 400 × 400 600 



 

 

 

The RGB images provide visual information, while the pothole depth maps and 

segmentation masks serve as ground truth labels for the depth and segmentation 

predictions, respectively. Through the training process, the modified 3DPredicNet 

model learns the underlying correlations between RGB images and the corresponding 

pothole depth maps and segmentation masks. Once the training is completed, the trained 

modified 3DPredicNet model is ready for testing. In the testing phase, an RGB image 

is inputted to the model. The model then predicts the monocular pothole depth map, 

which estimates the depth information of the potholes present in the image. 

Additionally, the model performs pothole segmentation, accurately identifying and 

delineating the pothole regions within the image. 

 

 

Modified 3DPredicNet 

 

The modified 3DPredicNet [1] is specifically designed to predict the depth map and 

segmentation mask of potholes from a single RGB image. The overall architecture of 

the network is depicted in Figure 2. It incorporates several key components to 

effectively capture and utilize the relevant features within the image. The network 

architecture begins with a convolution block (Conv block) that applies convolutional 

layers to the input RGB image, resulting in feature maps with reduced spatial 

dimensions (H/2, W/2, D=16). The feature maps obtained from the convolution block 

are then passed through the residual intensive convolution modules (RICM) block. The 

RICM block further enhances the extracted features by leveraging residual connections 

and intensive convolution operations. This block helps in capturing both low level and 

higher-level representations and context information. After the RICM block, the feature 

maps are fed into a depth-wise separable convolution block (DSC). 

The DSC block is specifically designed to reduce the number of parameters in the 

network while maintaining spatial information. It achieves this by separating the 

convolution process into depth-wise convolutions and point-wise convolutions, thereby 

optimizing the network's efficiency. To further enhance the network's performance, dual 

attention modules (DAM) are incorporated. The DAM module helps the network to 

focus on relevant spatial and channel-wise features by applying attention mechanisms. 

Both downsampling and upsampling operations are utilized in the network. 

Downsampling is performed to reduce the spatial dimensions of the feature maps, while 

upsampling is employed to restore the dimensions to the original size. 

 

 
Figure 2. Modified 3DPredicNet 



 

These operations help in capturing multi-scale information and preserving fine 

details during the prediction process. The network architecture involves the repetition 

of certain components to ensure effective feature extraction and information flow. 

Specifically, the feature maps pass through the DAM upsampling and DSC once again, 

allowing for additional refinement of the features. By incorporating these various 

components, the modified 3DPredicNet architecture is designed to effectively predict 

the depth map and segmentation mask of potholes from a single RGB image. 

 

 

ANALYSIS 

 

In this section, the performance of the proposed modified 3DPredicNet is assessed 

on both a newly developed pothole dataset as shown in Figure 3 and a publicly available 

dataset as shown in Figure 4 and 5 [24]. Figure 3 illustrates the input RGB image fed 

(Figure 3a) into the network, along with its corresponding segmentation (Figure 3b) and 

depth map (Figure 3c). The evaluation results demonstrate that the proposed method 

achieves a mean intersection over union (mIoU) of 81.05. Furthermore, the modified 

3DPredicNet achieved a minimum absolute relative error of 0.062, a square relative 

error of 0.011, and a root mean square error of 0.118. These results show the 

effectiveness and reliability of the proposed methodology in accurately predicting and 

segmenting potholes in images. 
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Figure 3.  Pothole segmentation and depth map estimation using RGB image input of newly 

developed dataset 

 

 

Figure 4 shows the outcomes of pothole segmentation using RGB image inputs 

(Figure 4a) from the Pothole600 dataset. The ground truth (Figure 4b) and segmentation 



output (Figure 4c) produced by the model are presented, illustrating the effectiveness of 

the proposed method. Three distinct RGB images depicting small potholes were fed into 

the trained model. The evaluation of the segmentation task on RGB input images 

resulted in an mIoU score of 71.90. 
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Figure 4. Pothole segmentation using RGB image input of Pothole600 dataset 

 

 

Figure 5 presents the results of depth map estimation achieved by utilizing RGB 

images (Figure 5a) trained on the Pothole600 dataset. The depth maps generated by the 

model are compared with their corresponding ground truth data. The evaluation metrics 

used to assess the accuracy of the depth map estimation include an Absolute Relative 

Difference (ARel) of 0.093, a Scale Relative Difference (SRel) of 0.033, a Root Mean 

Squared Error (RMSE) of 0.191, and a logarithmic Root Mean Squared Error 

(RMSElog) of 0.0641. The presented results provide quantitative measures indicating 

the model's performance in estimating accurate depth maps. These findings validate the 

effectiveness of the proposed method for depth map estimation using RGB images from 

the Pothole600 dataset. 
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Figure 5. Depth map estimation using RGB image input from the Pothole600 dataset. 

 

 

CONCLUSION 

The modified 3DPredicNet [1] was tested further to measure its performance on 

additional data. The model was tested on both a newly developed pothole dataset and a 

publicly available dataset, demonstrating its effectiveness in various scenarios. The 

evaluation results revealed that the modified 3DPredicNet with 2.79 million paramters 

achieved mIoU of 81.05, indicating accurate segmentation performance when tested on 

newly developed dataset. Moreover, the model achieved a minimum ARel of 0.062, 

SRel of 0.011, and RMSE of 0.118. These results indicate the model's ability to 

accurately predict and segment potholes in RGB images. The evaluation of the depth 

map estimation using RGB images trained on the Pothole600 dataset further showcased 

the capabilities of the modified 3DPredicNet. The model achieved a ARel of 0.093 and 

SRel of 0.033 demonstrating accurate depth estimation. 
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