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ABSTRACT

Optimal maintenance planning for railway infrastructure and assets forms a complex
sequential decision-making problem. Railways are naturally subject to deterioration,
which can result in compromised service and increased safety risks and costs. Mainte-
nance actions ought to be proactively planned to prevent the adverse effects of deterio-
ration and the associated costs. Such predictive actions can be planned based on mon-
itoring data, which are often indirect and noisy, thus offering an uncertain assessment
of the railway condition. From a mathematical perspective, this forms a stochastic con-
trol problem under data uncertainty, which can be cast as a Partially Observable Markov
Decision Process (POMDP). In this work, we model the real-world problem of railway
optimal maintenance planning as a POMDP, with the problem parameters inferred from
real-world monitoring data. The POMDP model serves to infer beliefs over a set of hid-
den states, which aim to capture the evolution of the underlying deterioration process.
The maintenance optimization problem is here ultimately solved via the use of deep Re-
inforcement Learning (RL) techniques, which allow for a more flexible and broad search
over the policy space when compared to classical POMDP solution algorithms. A com-
parison of value-based and policy-based RL methods is also offered, which exploit deep
learning architectures to model either action-value functions (i.e., the expected returns
from an action-state pair) or directly the policy. Our work shows how this complex plan-
ning problem can be effectively solved via deep RL to derive an optimized maintenance
pol%ﬁ%u?f railway tracks, demonstrated on real-world monitoring data, and offers insights
into the solution provided by different classes of RL algorithms.
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INTRODUCTION

Railway systems are subject to harsh environments and high repetitive loads, which
lead to accelerated deterioration, resulting in a degraded level of service and increased
risks and costs [1]]. Maintenance actions, which may reflect various intervention inten-
sities (e.g., minor/major repair or complete overhaul), must be planned throughout the
operating life-cycle of the tracks, and in compliance with the current railway conditions,
in order to prevent deterioration effects and associated costs [2,3]]. The resulting optimal
maintenance planning in railway systems forms a complex sequential decision-making
problem.

The complexity is exacerbated due to the limited knowledge of the condition (state)
of the railway infrastructure. This limitation is in part addressed by means of Structural
Health Monitoring (SHM) tools [4-6]], which however can only offer partial and/or noisy
information about the actual condition of a system. For tackling such observation un-
certainty, the problem can be cast into a Partially Observable Markov Decision Process
(POMDP) framework [7]. POMDPs account for the incomplete knowledge of the sys-
tem’s states, thus termed hidden states, and the uncertainty associated with observations
towards deriving optimal policies; namely a sequence of optimal decisions that minimize
the total costs over a prescribed horizon, under stochastic environments.

However, POMDPs are notoriously difficult to solve and generally only approximate
solution algorithms are available [[8]. This difficulty can be attributed to the inherent
uncertainty in the observations, which requires the decision maker to keep track of a
history of past observations and actions for more efficient planning. Depending on the
dimensionality of the observation and action spaces and the horizon of the problem, the
complexity of the solution can abruptly escalate over time. This is referred to as the
curse of history [[/]. Under this premise, POMDPs would no longer satisfy the Markov
property, which forms a main trait of Markov Decision Processes (MDPs) and allows for
use of efficient solution algorithms with optimality guarantees.

To alleviate these problems, a common approach is the introduction of the belief vari-
able b in the POMDP framework [9]], namely a probability distribution over the hidden
states inferred via Bayesian updates when new observations and actions are available.
The belief reflects a sufficient statistics of the history of actions and observations, in the
sense that knowledge of b; bears an equivalent amount of information as the history of all
past observations and actions until time ¢. Solving a POMDP is equivalent to solving the
planning problem defined over the belief space, termed the belief-MDP [10]. While the
belief-MDP can still be considered a complex problem to be solved, this tremendously
simplifies the solution of the original POMDP and the Markov property is satisfied anew.

An efficient approach for the solution of POMDP problems, in the context of main-
tenance planning, has been introduced in Andriotis and Papakonstantinou [|11]]. The
input space is mapped from the observations and actions to the belief variable, i.e., the
POMDP problem is shifted into the belief-MDP, by means of a model of the environ-
ment and Bayes theorem. The beliefs are then used as inputs of neural networks, which
solve the problem, i.e., learn an optimal policy, through deep Reinforcement Learning
(RL) algorithms. This approach has led to the solution of particularly complex POMDP
problems [[11-13]].

The choice of the deep RL algorithm is, however, still critical for the solution of



the problem. The spectrum of available algorithms is vast, comprising different fam-
ilies of methods. Focusing on model-free RL algorithms [14], i.e., excluding use of
model-based RL methods [15]], which would introduce further challenges in the context
of partial observability, these can be divided into: 1) value-based methods, which learn
the expected value (return) from a given state of the problem and are limited to discrete
control settings, and ii) policy-based methods, which directly parametrize the policy and
search the optimal solution via gradient descent, enabling also the solution of continuous
control tasks. The latter methods can be enhanced with the use of value networks (critic),
inspired by value-based algorithms, to stabilize the policy network (actor) training, re-
sulting into the actor-critic approach. However, even within the same family of methods,
notoriously no algorithm is consistently better than the others on an extended range of
tasks [[16,/17]. In maintenance planning, where the action space is generally discrete,
both families of methods are permissible, rendering the choice of the RL algorithm even
more complex.

In this work, we model a real-world problem of railway optimal maintenance plan-
ning as a POMDP, with the problem parameters being inferred from real-world monitor-
ing data. This has been accomplished in previous work [18}/19] by means of a hidden
Markov model conditioned on actions. The model then serves to infer beliefs over the
actual hidden states which are meant to reflect the best available knowledge over the
state (condition) of the monitored railway infrastructure. In this case, we employ obser-
vations that allow to indirectly assess the condition of the rails and substructure. The
maintenance optimization problem is here ultimately solved by deep RL techniques in
order to provide the sought policy. A comparison of value-based and policy-based RL
methods is also offered. In particular, a state-of-the-art algorithm is chosen for each
class, namely Rainbow [20] and Policy Proximal Optimization (PPO) [21] for value-
based and policy-based methods, respectively. Specifically, PPO is implemented with
the clipped surrogate objective and the actor-critic style. Despite the discrete control set-
ting, where value-based methods are often expected to exhibit better performance than
policy-based methods, our results show that PPO is able to deliver a robust performance,
outperforming Rainbow in the considered real-world problem.

BACKGROUND AND METHODS FUNDAMENTALS
Markov Decision Processes

MDPs [22]] are formulated as sequential stochastic control problems defined by the
tuple (S, A, R, T, H,~). At a given time-step ¢, the decision maker (or agent) observes
the state of the problem (or environment) s; € S, selects action a; € A, and receives
the reward 7, = R(s¢, a;). The environment then transitions to the new state s;,; ac-
cording to the stochastic transition model 7'. The objective is to find the policy 7* which

maximizes the expected sum of rewards, namely 7* = arg max, E [Ef{: 0 fytrt} .

Value functions

Value-based methods are based on the value function V™ (s;) [23], which outputs the



expected sum of rewards of policy 7 from a certain state:

VW(St) = anw(st) St>at + Z 5t+1|3taat Vﬁ(3t+1) (D
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The state values of the optimal policy 7* are given by V™ (s;) = max, V™ (s;). The
expected sum of rewards of policy 7 from a certain state-action pair is provided by the
Q-function, which can be written in the form of the Bellman equation [24]:

QW(Stvat) Staat + v Z 3t+1|3taat QW(St—I—lvﬂ-(St—i—l)) (2)

s¢r1€8

From the expectation of the Q-function it is possible to retrieve the value-function, i.e.,
V7(s¢) = Egyn(s)@7 (5¢,a). If a policy 7 coincides with the optimal policy 7*, then
the maximization operator replaces the expectation in the previous formulas. Finally,
the advantage value function estimates the advantage of selecting action a;, instead of
following the current policy 7:

A (81, at) = Q7 (81, a1) — V7 (s4) (3)

The current policy 7 can be recursively improved via reinforcement learning via Tem-
poral Difference (TD) methods [25]:

Q7 (s, ar) +— Q" (51, a¢) + 4)

where « is the learning rate, § = y — Q™ (s, a;) are the TD errors, and y is the vector of
targets. For instance, in the Q-learning algorithm y = r;, + v max, Q™ (s441, a).

In deep RL algorithms, Q-values are parametrized by a neural network, characterized
by a vector of parameters 6. In the seminal Deep Q-Network (DQN) [26] algorithm,
the expectations are computed through a batch of tuples (s, a;, 7, s¢+1) collected on a
replay buffer D and a second neural network ¢’ is used for the target Q-values. Namely,
the DQN algorithm minimizes the following loss function:

2
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Rainbow

Rainbow [20], which is considered the state-of-the-art value-based method, com-
bines six different extensions into the DQN algorithm, leading to tremendously improved
data efficiency and final performance. These extensions are summarized as follows:

* Double Q-learning allows to alleviate the maximization bias by decoupling the
action selection from the estimation of its action value through two separate Q-
networks.

* Prioritized replay boosts the learning by sampling batches from the replay buffer
proportionally to the TD error, instead of uniform sampling.



* Dueling networks are used for parallel estimation of state values and advantage
values, which are then combined by a special aggregator for more accurate action
value estimates.

* Multi-step learning leads to significantly improved performance by exploiting
n-step target returns instead of the original single step.

* Distributional RL is used to learn approximate distributions of state action values
by discretizing the distribution in N “atoms”, instead of single expected return
estimates.

* Noisy Nets propose a noisy linear layer, whose noise degree is learned during
training, to favour state-conditional exploration instead of fixed e-greedy policies.

Proximal Policy Optimization

PPO [21]] is considered the state-of-the-art policy-based method, namely a class of
algorithms that directly parametrize the policy 7y via neural networks with parameters
0. PPO is rooted in trust region methods, albeit comprising a tremendously simpler
implementation. Contrary to other policy-based methods, which aim to keep the param-
eters of the updated policy network 6’ close to @ via the learning step size of gradient
descent, trust region methods [27]] aim to keep the updated policy 7y close to 7y in or-
der to achieve monotonic improvements. This is achieved by adding a Kullback-Leibler
(KL) divergence constraint, transforming the RL problem into a constrained optimiza-
tion problem, which is non-trivial to implement.

PPO ensures the closeness of the new policy by simply optimizing the following
(unconstrained) clipped surrogate objective:

L) =E [min (—ml(S)A”, clip (my(s) 1 —e 1+ e) A”ﬂ)} (6)
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where clip(+) is a function that clips the ratio between new and old policies by the spec-
ified (1 — ¢,1 + €) bounds, and e is the clipping hyperparameter. Despite the simpler
implementation, PPO enables the largest possible improvement without the risk of per-
formance collapse by bounding the permitted changes in the policy. As a result, PPO
is known to be a robust algorithm, significantly reducing the detrimental variance that
notoriously affects policy gradient methods. Finally, PPO trains a stochastic policy by
predicting a probability distribution over actions. The latter are sampled from the learned
distributions during training to promote exploration, while the best action (i.e., the one
with highest probability) can be used at testing time.

Partially Observable Markov Decision Processes

POMDPs are a generalization of the MDP framework, with uncertainty incorporated
into the observations and defined by the tuple (S, A, Z, R,T,0,by, H,v). The state
s; € S is no longer accessed by the agent, who only receives the observation z; € Z
produced according to the stochastic observation model O. The agent thus forms its
belief, which was initialized in by, with the new observation (and past action) according
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Figure 1. Probabilistic graphical model of a POMDP.

to Equation [/, The agent then selects action a; € A based on the updated belief b,.
The objective is thus to find the optimal policy that maximizes the expected returns,
which maps beliefs to actions. The sequential decision-making problem of the POMDP
is displayed in the probabilistic graphical model in Figure I}

b(st) = M Z p(se | si-1,ar-1)b(se-1)

p(z | b, ar)
Stfles (7)
p(z | by az1) = ZP(% | st,ai-1) Z p(se | se—1, ar—1)b(s¢-1)
st€S st—1E€S

In this work, the agent, represented by neural networks, does not receive the obser-
vations z, but only the beliefs b, which can thus be considered as directly computed by
the environment. As such, the agent tackles a problem that can be considered as an MDP
over the (continuous) belief space, i.e., the states s of the MDP framework coincide with
the beliefs b.

THE RAILWAY OPTIMAL MAINTENANCE

In this work, we are concerned with the real-world problem of optimal maintenance.
The railway track, displayed in Figure[2] is composed of a superstructure (rails, sleepers,
and ballast) and the substructure. The latter fulfills several functions, such as sustaining
the superstructure, acting as a filter to prevent infiltration of fine material, and favoring
the water runoff from the track. As such, the substructure plays a key role in the degrada-
tion process of the track. In addition, replacement of the substructure costs about twice
the amount of a superstructure renewal [ 1], significantly affecting the life-cycle costs of
the track.

Accurate maintenance of the substructure is key to extend the lifetime of the track,
reduce the operating costs, and ensure an adequate service. When the deterioration level
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Figure 2. Structure of the railway track.

is estimated as moderate, a so-called tamping maintenance action is often applied. Oth-
erwise, if the substructure is in poor condition, a replacement action is instead deemed
as suitable.

The direct observation of the condition of a complex system, such as a railway net-
work, is a task with inherent uncertainties. The common approach of visual inspec-
tion offers more of a qualitative and often biased assessment. More recently, railway
managers exploit indirect information that can be extracted via use of SHM tools. In
this work, we rely on use of the fractal value indicator [28]], which is computed from
on-board monitoring measurements. A specialized diagnostic vehicle carries out the
measurement of the so-called longitudinal level, which essentially translates into an in-
dicator of the regularity of the rail profile. The fractal value is then computed via filtering
these measurements within pre-specified wavelength ranges. In this work, we employ
the long-wave (25-70 m) fractal values, which have been shown to comprise an indirect
indicator of substructure deterioration [1]] and are used by railway authorities to sup-
port track maintenance [28]]. Through a collaboration with the Swiss Federal Railways
(SBB), we have access to almost 10 years of fractal values collected over the Swiss
railway network. In addition, the ZMON (ZustandsMONitoring—condition monitor-
ing) database of the SBB offers access to logs where remedial actions [29], including
tamping and renewal, are recorded over the examined time period for the investigated
tracks.

While fractal values constitute a valid indicator for decision support, it should be
noted that these do not directly measure the substructure deterioration but only form
a correlation therewith. In addition, the collected data is affected by noise, associated
with measurement imprecision and disturbances, and possible errors during data storage.
As such, the railway optimal maintenance forms a natural application of the POMDP
modeling, where the uncertain observations are represented by the fractal values, which
are defined over the continuous negative set of real numbers. The hidden states are
discretized in 4 possible ground truth railway conditions. Three possible actions are
considered, namely the action do-nothing ag, and the aforementioned tamping and re-
newal maintenance actions a; and as, respectively. The (negative) rewards represent
the costs associated with actions and states and are reported in Table [I| in general cost
units. The transition dynamics 7" and the observation generating process O have been
inferred from the aforementioned real-world collected data in Arcieri et al. [[18,[{19] to
build the POMDP model of the problem. Finally, one time-step of the problem equals 6



TABLE I. COSTS OF THE POMDP MODEL.

State condition So $1 S S3
Maintenance action
ag 0 0 0 0
a1 —50 —50 —50 —50
as —2,050 —2,710 -3,370 —4,050
Condition cost —100 —200 —1,000 —8&,000

months, since this is the average frequency of the fractal value collection, and the consid-
ered horizon of the planning problem is 50 time-steps. The defining problem traits have
been elicited from the SBB (the Swiss Federal Railways) so as to adhere to real-world
characteristics.

EVALUATION

The problem of optimal planning of railway optimal maintenance under data uncer-
tainty, herein modelled as a POMDP, is solved by means of the RL methods previously
described, namely PPO and Rainbow. The hyperparameters have been optimized via a
thorough grid-search, with the best performing values reported in Table [}

For both algorithms, 2 million training time-steps are sampled from the environment
(i.e., 40,000 training episodes). Every 4,000 training time-steps, network/policy updates
are performed on the collected data. Every 5 updates, an evaluation iteration of the
best learned policy (i.e., without stochasticity of the policy) is performed over 100,000
testing episodes. Summary statistics of the best evaluation iteration are reported for both
algorithms in Table In addition, the optimal solution computed by assuming full
observability of the hidden states is also reported as an upper bound of the best possible
solution that can be achieved under data uncertainty.

Although value-based methods are usually often expected to yield better perfor-
mance than policy-based methods on discrete control tasks, PPO shows a robust and

Intervals of [time-step, learning rate]

TABLE II. BEST HYPERPARAMETERS FROM THE GRID-SEARCH OPTIMIZATION.

Hyperparmeter PPO Rainbow
Hidden layers 2 2
Hidden size 256 256
Learning rate le-4 [[O, 1e-3], [200000, 1e-4], [2000000, 1e-5]
Activation ReLu ReLu
Clip parameter 0.1 -
Number atoms - 100
Vinin - -25,000
Vinaz - -10,000
Target update frequency - 50




TABLE III. PERFORMANCE OF THE BEST MODEL INFERRED DURING THE TRAINING
PROCESS, EVALUATED OVER 100,000 SIMULATIONS.

Method Avg. performance SE = Max Min

Optimal MDP -13,315 27 -5,000 -93,980
PPO -14,519 36 -5,050 -119,750
Rainbow -14,830 37 -5,050 -127,400

significantly better solution than Rainbow on this optimal maintenance problem. As
such, it delivers a maintenance planning policy of railway assets, based on the frac-
tal value indicator, which is not far from the optimal solution of the fully observable
problem, which is based on the (unrealistic) assumption of directly observing the deteri-
oration state s;.

Finally, Figure [3] shows two trials of the maintenance actions planned by the RL
agent trained with PPO (left) and the one trained with Rainbow (right). From bottom to
top: the observations (fractal values); the beliefs computed via Bayes’ formula and used
as inputs by the RL agents; the true hidden states, which are not accessed by the agent
and/or the model; the actions planned by the RL agents.

CONCLUSIONS

In this work, a railway optimal maintenance problem is modelled as a POMDP. The
problem, whose transition dynamics and observation generating process have been in-
ferred from real-world monitoring data, is solved by transforming the POMDP into the
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Figure 3. Policy simulations of the maintenance actions planned by the RL agents trained with PPO
(left) and Rainbow (right). From bottom to top: the observations (fractal values); the beliefs, namely a
probability distribution over hidden states, computed via Bayes’ formula and used as inputs by the RL
agents; the true hidden states, which are not accessed by the agent and/or the model; the actions planned
by the RL agents.



equivalent belief-MDP problem, which is ultimately solved via deep RL techniques.
A comparison of the solution offered by two RL algorithms is presented, namely PPO
and Rainbow, which form state-of-the-art solutions for policy-based and value-based RL
methods, respectively. Despite the discrete control setting, which is often expected to fa-
vor value-based algorithms, PPO delivers a robust and superior performance to Rainbow.

The solution methods presented here focused on model-free RL schemes. Future
work will explore deep model-based RL solutions [15]], involving different algorithms
and new challenges to be addressed, in particular how to reliably learn the POMDP
structure under data uncertainty.
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