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ABSTRACT 

In structural health monitoring, various types of sensors collect a large amount of 

data for structural defect detection. These data provide critical support for the 

application of machine learning for structural damage identification. However, machine 

learning relies heavily on training data, whose quality and distribution can affect the 

effectiveness of detection models in real-world damage identification. In addition, 

machine learning contains a large number of parameters that are highly uncertain, which 

results in the output of machine learning models is not always as reliable. These 

deterministic deep networks usually make overconfident decisions in some data. The 

ability of deep learning to provide safe and reliable decisions is very important when 

applied in the field of engineering. In order to ensure the decision security of machine 

learning models, this paper proposes a hybrid probabilistic deep network for structural 

damage identification. The proposed method converts deterministic weights into a 

Gaussian distribution, which in turn quantifies the uncertainty in machine learning. 

Among them, variational inference is used for uncertainty modeling of probabilistic 

deep networks. These uncertainty metrics can be used to determine whether the output 

of the machine learning model is reliable. Nevertheless, the introduction of uncertainty 

weakens the learning ability of deep networks. Meanwhile, the number of parameters 

in the probabilistic layer is twice that of the deterministic layer for the same architecture. 

Therefore, probabilistic deep learning is more difficult to train compared to 

deterministic deep learning. To address these issues, deep learning with hybrid 

probabilistic and non-probabilistic layers needs to be investigated. This paper analyzed 

and discussed the effects of different numbers of probability layers on the effectiveness 

of structural damage identification. Finally, a series of experimental results showed that 

the proposed method is able to accurately identify structural damage while quantifying 

the decision uncertainty. 

KEYWORDS: probabilistic deep learning; damage identification; uncertainty 

quantification; variational inference 

1. Introduction

Damage identification is one of the most important parts of structural health 

monitoring. Structural damage can affect the durability of structures. As the damage 

continues to develop, the increasing degree of damage may cause structural safety 

accidents. Therefore, it is essential to identify the structural damage. In recent years, 

there has been a rapid development of various types of devices with image collection 

capabilities. They can visualize the surface morphology of structures and provide richer 

sensory data for structural damage identification. These sensory data contain implicit 

properties of structural damage. Mining damage sensitive properties from these data is 

the first step in identifying damage. Recently, data-driven algorithms such as deep 

learning have gained much attention and achieved remarkable results in various fields. 

Structural damage recognition based on deep learning has also been rapidly developed 

[1]. Depending on the type of sensed data, the method can be divided into two 

categories. One category is oriented to one-dimensional temporal sensing data, such as 

acceleration and other structural responses. Zhang et al [2] proposed an incremental 



learnable machine learning method for identifying internal defects in wood in 

combination with ultrasonic signals. Compared with convolutional neural networks, 

their proposed method has the 12 times higher training efficiency and the 2.1 times 

higher inference efficiency. Liu et al. [3] used convolutional neural network to process 

the guided Lamb wave signal and thus achieve crack recognition in thin plate structures. 

The other category is oriented to two-dimensional sensing data, such as image data that 

can reflect structural phenotypes. Zhang et al. proposed [4] a surface crack recognition 

method based on incremental learning. Their method achieves the same level of 

recognition accuracy as the deep learning method, but the training efficiency is about 

20 times higher than that of the latter. Moreover, the incremental learning mode is more 

in line with the practical engineering needs and can further reduce the update time of 

the model [5]. Beckman et al. [6] proposed a damage volume quantification method 

based on deep learning and depth cameras. The method can quantify the spall volume 

of multiple surfaces in concrete structures simultaneously. The average accuracy error 

of volume quantification is 9.45% when the distance between the structure and the depth 

camera is in the range of 100 cm to 250 cm. 

Most of the existing deep learning methods are deterministic methods, which can 

only give deterministic recognition results. This type of approach tends to make some 

overconfident decisions. Bayesian is one of the main tools for quantifying uncertainty, 

and it has been widely used in civil engineering. Yuen et al [7] proposed a Bayesian 

nonparametric general regression with adaptive kernel bandwidth, which can adapt to 

non-uniformly distributed training data, and achieved significant results in modeling 

seismic attenuation relations. Luo et al [8] proposed an improved Bayesian damage 

identification method, established a new objective function based on autoregressive 

coefficients, and introduced particle swarm optimization to improve the standard 

Metropolis-Hastings. Combining Bayesian theory with deep learning methods will 

facilitate the development of deep learning in uncertainty quantification and better 

evaluate the processing of deep learning models for different distributions of perceptual 

data. In this paper, a hybrid probabilistic deep learning method is proposed for structural 

surface crack identification. Compared with ordinary deep learning methods, this 

method not only enables highly accurate damage recognition, but also quantifies the 

uncertainty of decision making. Meanwhile, uncertainty is one of the key indicators of 

the generalizability of the model. Section 2 shows the core theory of hybrid probabilistic 

deep learning. Section 3 shows and analyses the recognition effects of hybrid 

probabilistic deep learning models in the crack classification task. Section 4 summarizes 

the entire article. 

2. Probabilistic Deep Learning

Probabilistic deep learning combines Bayesian theory with deep neural network 

methods and introduces uncertainty of parameters into deep learning models, making it 

possible to have quantitative decision uncertainty. Quantifying uncertainty can help 

deep learning models escape the problem of overconfidence. Therefore, a probabilistic 

deep learning-based crack identification method is proposed in this paper. Compared 

with ordinary deep learning methods, the proposed method uses the probabilistic layer 

to introduce uncertainty in the parameters. In this paper, we mainly focus on two-

dimensional damage images as the processing object, so the two-dimensional 

probabilistic convolutional layer is the core component of the proposed probabilistic 



deep learning. Further, in order to improve the recognition accuracy of probabilistic 

deep learning, probabilistic convolutional layers and ordinary convolutional layers are 

used together. For the normal convolution layer, the input is convolved with the 

convolution kernel for the convolution operation. The ordinary convolutional layer 

obtains deterministic weights by point estimation. However, the weights and biases in 

the probabilistic convolution layer are derived from a distribution. If the posterior 

distribution of the parameters in the network can be obtained, the uncertainty of the 

weights can be taken into account. The posterior distribution of the parameters is 

calculated as follows: 
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where p(w|D) is the posterior distribution of the parameters; p(w) is the prior 

distribution of the parameters; p(D) is the evidence; p(D|w) is the data likelihood. 

However, it is very difficult to compute the posterior distribution directly, and 

variational inference is generally used to update the probability model. It uses the 

variational distribution to approximate the true posterior distribution. It uses the 

variational distribution to approximate the true posterior distribution and updates the 

parameters in the network by minimizing the Kullback-Leibler Divergence (KLD) 

between the variational distribution and the prior distribution. The objective function 

can be approximated by Monte Carlo as: 
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where wi denotes the i-th Monte Carlo sampling according to the variational 

posterior q(wi |ɵ). In this paper, the variational posterior uses a Gaussian distribution, 

which is denoted as ɵ = (µ, σ). µ denotes the mean of the distribution and σ is the 

standard deviation of the distribution. For the weights w in the network, we use their 

distribution parameterization to represent them. Therefore, the number of parameters in 

the probabilistic layer is twice as many as in the non-probabilistic layer. The training 

process of a neural network consists of forward computation and backward transfer. In 

the forward calculation, the parameter values in the probability layer are drawn from the 

variational distribution. This part requires the use of reparameterization. ɛ is obtained 

by sampling from the parameter-free distribution (N(0, I)). The weights w obtained from 

the sampling are: 

(log(1 ))w e = + +  (3) 

where the distribution of weights is (µ, σ). Bayes by Backprop can be compatible 

with the backpropagation algorithm to learn the probability distribution of the neural 

network weights [9]. This form of updating parameters is similar to that of ordinary non-

probabilistic neural networks and provides the basis for hybrid probabilistic deep 

learning networks. 

3. Probabilistic identification of crack damage

3.1 Crack image dataset

In this paper, a crack damage classification dataset consisting of 2600 images of size 

128×128 pixels is used [10]. Of these, 1300 images contained cracks and the other 1300 

images did not contain cracks. 80% of the images are randomly selected as the training 



and validation set for the probabilistic model, and the remaining 20% images are used 

as the test set. Some image samples in the dataset are shown in Figure 1. 

Figure 1. Some image samples. 

3.2 Hybrid probabilistic deep model 

Compared to the convolutional layer, the probabilistic convolutional layer has twice 

the number of parameters. As a result, probabilistic convolution is more difficult to 

converge. To improve the recognition accuracy and effectiveness of detection models, 

hybrid probabilistic deep learning networks are designed. In this section, four hybrid 

probabilistic deep learning architectures are used, employing 1 probabilistic 

convolutional layer and 1 convolutional layer (model-11); 1 probabilistic convolutional 

layer and 3 convolutional layers (model-13); 2 probabilistic convolutional layers and 2 

convolutional layers (model-22); and 3 probabilistic convolutional layers and 1 

convolutional layer (model-31), respectively. The training process of the four hybrid 

probabilistic deep learning networks is shown in Figure 2. When the total number of 

both convolutional and probabilistic convolutional layers is 4, the more the number of 

convolutional layers, the faster the model converges. When the number of probabilistic 

convolutional layers is 3 and the number of convolutional layers is 1, the recognition 

accuracy of the detection model is significantly lower than that of other hybrid 

probabilistic detection models. The performance of each hybrid probabilistic detection 

model is shown in Table I. It can be seen from this that the more the number of 

convolutional layers, the higher the recognition accuracy. Therefore, combining the 

probabilistic and non-probabilistic layers can effectively improve the recognition 

accuracy and training efficiency of the model. 

TABLE I. RECOGNITION PERFORMANCE OF DIFFERENT HYBRID PROBABILITY 

MODELS 

Model Training accuracy Validation accuracy Testing accuracy 

model-11 0.8452 0.8024 0.8154 

model-13 0.9645 0.9244 0.9365 

model-22 0.9361 0.9049 0.9173 

model-31 0.8590 0.8439 0.8596 

Two of the hybrid probabilistic models are selected for the uncertainty 

quantification analysis, i.e., model-11 with one probabilistic convolutional layer and 

one convolutional layer and model-13 with one probabilistic convolutional layer and 



three convolutional layers. These models are used to identify three representative 

sample images, as shown in Figure 3. 

(1) model-11 (2) model-13

(3) model-22 (4) model-31

Figure 2. Training process of hybrid probability models. 

a b c 

Figure 3. Samples for uncertainty analysis. 

As can be seen in Figure 4, both hybrid probabilistic deep learning detection models 

achieve accurate recognition of crack image with very small uncertainty. In addition, 

model-13 also achieves accurate recognition of no crack image with very small 

uncertainty. The uncertainty quantification for decision making with hybrid probability 

models is shown in Table II. However, for the no crack image containing small stones, 

model-13 incorrectly determines them as cracks with a small uncertainty. By 
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comparison, it is found that when the recognition accuracy of the probabilistic model is 

higher, its uncertainty is lower.  

(1) a and model-11 (2) a and model-13

(3) b and model-11 (4) b and model-13

(5) c and model-11 (6) c and model-13

Figure 4. 300 recognition results of different hybrid probability models for the three samples. 

TABLE II. UNCERTAINTY QUANTIFICATION FOR DECISION MAKING WITH 

HYBRID PROBABILITY MODELS 

Model a b c 

model-11 0.0001 0.3601 0.3645 
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model-13 5.5e-6 0.0637 0.0191 

4. Conclusion

This paper presents a probabilistic deep learning method for structural surface crack 

recognition. The proposed method can quantify the uncertainty of decisions and prevent 

overconfident decisions. This paper compares and analyses in detail the effect of the 

number of probability layers on the recognition effect and uncertainty quantification 

results. The more the number of probabilistic convolutional layers, the better the ability 

of probabilistic deep learning to extract features, but a bottleneck also occurs. In 

addition, to further improve the recognition of probabilistic deep learning, the 

probabilistic convolutional layer is used together with the ordinary convolutional layer 

to estimate the output of the network and its uncertainty. A series of comparative results 

showed that convolutional layers can facilitate fast convergence of probabilistic models 

and further improve the recognition accuracy of probabilistic models. In addition, the 

higher the recognition accuracy of a probabilistic model, the lower the value of its 

quantified uncertainty. Therefore, probabilistic deep learning has a large potential in the 

field of engineering safety detection. 
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