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ABSTRACT 

During normal operation, railway vehicles often endure significant vibrations due to 
unsteady aerodynamic loads. Precisely quantifying these transient forces offers essential 
insights for operational safety monitoring and vehicle aerodynamic testing. In this paper, 
we introduce an innovative inverse method for reconstructing active aerodynamic loads 
using a limited number of acceleration measurements. This method capitalizes on health 
monitoring instruments already present on the vehicles, thereby eliminating the necessity 
for supplementary pressure sensors on the vehicle’s exterior surface, as mandated by 
traditional direct pressure measurement strategies. We develop a Multi-Task Gaussian 
Processes (MTGP) inverse estimation technique to calculate the conditional probability 
distribution of loads given the noise-affected acceleration data. The MTGP approach 
boasts the advantage of analytically forming the posterior of unsteady aerodynamic loads 
at any time point, as well as offering high reconstruction accuracy. To validate our 
proposed method, we utilize a numerical example with a 31 DOF railway vehicle model. 
Aerodynamic loads generated by two trains passing each other are applied to the vehicle 
model, and acceleration data from the bogies are employed for the inverse reconstruction 
process. Our results successfully demonstrate the feasibility of reconstructing unsteady 
aerodynamic loads on railway vehicles, highlighting the potential of our novel approach. 

INTRODUCTION 

Railway vehicles are subject to various external forces during operation, among 
which unsteady aerodynamic loads play a critical role in influencing the vehicle’s dy- 
namic behavior, stability, and safety, which might occur in several scenarios, such as two 
vehicles passing each other [1], a single train moving through a double-track tunnel [2], 
as well as the local landforms induced crosswinds [3]. The accurate quantification of 
these loads is essential for the development and optimization of railway vehicle designs, 
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as well as for monitoring their performance in operational conditions. Despite its im-
portance, the inverse reconstruction of unsteady aerodynamic loads acting on railway
vehicles remains a challenging problem due to the complexity of the underlying fluid-
structure interactions and the limitations of traditional measurement techniques. Exist-
ing approaches for quantifying aerodynamic loads often rely on the direct deployment
of multiple pressure sensors on the vehicle’s surface [4]. While these methods provide
valuable insights into the local pressure distribution, they may be insufficient for captur-
ing the global load characteristics and may impose significant logistical and economic
burdens. Consequently, there is a pressing need to explore alternative strategies that can
overcome these limitations and facilitate a more accurate, efficient, and cost-effective
assessment of unsteady aerodynamic loads on railway vehicles.

In this paper, we address this challenge by proposing a novel inverse reconstruction
strategy for estimating active aerodynamic loads using a limited number of acceleration
measurements. The strategy circumvents the need for extensive sensor arrays and offers
a more streamlined and reliable means of determining the unsteady aerodynamic loads
acting on railway vehicles. By leveraging the developed Multi-Task Gaussian Processes
(MTGP) method, we are able to estimate the posterior distribution of aerodynamic loads
taking into consideration the noise of measurements.

Through a comprehensive series of theoretical analyses and numerical simulations,
we demonstrate the feasibility and efficacy of our proposed method in accurately recon-
structing unsteady aerodynamic loads. Our findings not only highlight the potential of
this innovative approach as a valuable tool for railway vehicle design and performance
assessment but also pave the way for future research aimed at advancing the state of the
art in unsteady aerodynamic load quantification and its practical applications.

THEORETICAL BACKGROUND

The railway vehicle under normal operating conditions could be modeled as a linear
discrete-time dynamical system. Under the action of unsteady aerodynamic loads, the
vehicle’s response at the k-th time step can be formulated using the weighting sequence
description shown in Eq. 1, given that the vehicle is of zero initial condition at 0-th time
step [5].

yk =
k∑

i=0

Hifk−i (1)

in which yk ∈ Rns is the measurement at k-th time step; Hi ∈ Rns×nf is the sys-
tem Markov parameters that could either be calculated using mechanical parameters or
modal properties; fk−i ∈ Rnf is the input force sequence. Here the ns and nf refer
to the number of sensors and forces, respectively. The weighting sequence description
illustrates the system response at each time step caused by all previous force history. In
practice, the structural responses are measured at equally spaced time steps. By denoting
nt as the total number of time steps, there are nt equations that can be drawn from Eq.
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In this paper, we use ŷ,H,f to represent the full vectors/matrix shown in Eq. 2, and
denote y as the observation on ŷ. The aerodynamic load reconstruction problem for
railway vehicles can be stated as follows: given y and H, compute f . Although Eq. 2
incorporates the complete physical information of the system, this problem is generally
ill-posed. In most cases, the H matrix is singular and cannot be directly inverted to
compute the inverse of f . The solution set for Eq. 2 is an infinite set, which can be
regarded as a polyhedron formed by the intersection of several hyperplanes. In other
instances, even when the H matrix is non-singular, small measurement errors in response
measurements ŷ can lead to significant errors in the computed forces.

To address this issue, we propose a novel MTGP method for the vehicle aerodynamic
load reconstruction problem. This method computes the analytical posterior distribution
of force histories given the measured acceleration data, i.e., p(f |y). MTGP is formulated
within the Bayesian framework and can be considered a novel Bayesian regularization
technique [6]. The prior assumption in MTGP is that all forces are independent Gaussian
Processes, with their mean and covariance functions assumed to be 0 and parameterized
positive definite kernel functions, that is,

f(t) ∼ GP(0, ki(t, t
′)), i = 1, 2, · · · , nf (3)

According to Eq. 2, the force vector on the right side of the equation consists of
jointly correlated Gaussian variables, while the left side represents acceleration values
that can be expressed by the linear combination of these Gaussian variables. Assuming
that the measurement noise is Gaussian white noise, any finite set of measured accel-
eration data will also follow a multivariate Gaussian distribution. MTGP constructs the
joint distribution of all Gaussian variables, including those related to force and mea-
sured acceleration. The posterior distribution p(f |y), according to Gaussian Processes
regression theory, is another multivariate Gaussian distribution, for which the mean and
covariance can be analytically derived.

The multivariate Gaussian distribution among all force variables is first defined as

f ∼ (0,Σff ) (4)

with
Σff = diag

[
Σ1,Σ2, · · ·Σnf

]
(5)

where Σi, i = 1, 2, · · · , nf are respectively drawn based on the covariance functions
ki(t, t

′). Then, we consider that the measured acceleration data differs from the function
values y by additive noise. We further assume that noise contamination of acceleration
data from any single sensor preserves homogeneity. That is, we have

y = Hf +w (6)



with
w = [w1;w2; · · · ;wns ] (7)

The vectors w1,w2, · · · ,wns contain variables drawn from ns independent identically
distributed Gaussian distribution, of which mean values are equal to zero and standard
deviations equal to σ1, σ2, · · · , σns . Therefore, w follows multivariate Gaussian distribu-
tion. The mean vector of the distribution E(w) is 0, and the covariance matrix E(ww⊤)
is denoted by Ψ, which is given by

Ψ = diag
[
σ2
1I, σ

2
2I · · ·σ2

ns
I
]

(8)

Having the mean and covariance of f and w, the multivariate Gaussian distribution of y
could be formulated, that is

E(y) = E(Hf +w) = HE(f) + E(w) = 0 (9)

Σyy = E(yy⊤) = E(Hff⊤H⊤ +ww⊤)

= HE(ff⊤)H⊤ + E(ww⊤)

= HΣffH
⊤ +Ψ (10)

Correspondingly, the covariance matrices that contain the covariance between variables
from forces and measurements can be written as

Σfy = Σ⊤
yf = E(fy⊤) = E(ff⊤H⊤) = ΣffH

⊤ (11)

Hence, the multivariate Gaussian distribution involving force and measured acceleration
could be constructed [

f
y

]
∼ N

(
0,

[
Σff Σfy

Σyf Σyy

])
(12)

The MTGP aims to compute the posterior distribution of forces given measured acceler-
ation data, that is, p(f |y), which could be formulated using the Bayes’ theorem

p(f |y;θ) = p(f ,y;θ)∫
p(f ,y;θ)df

(13)

where θ refers to the hyperparameters that include parameters in the covariance function
as well as the σi for noise stand deviation. The probability density function in the nu-
merator is easily derived since f and y jointly follow multivariate Gaussian distribution
shown in Eq. 12, which is

p(f ,y;θ) =
1

(2π)ntnf+ntns|Σ̂| 12
exp

(
−1

2

[
f
y

]⊤
Σ̂

−1
[
f
y

])
(14)

where Σ̂ represents the full covariance matrix in Eq. 12. Given that the denominators in
Eq. 13 and 14 are both proportionality constants that do not depend on f , as well as the
inverse of Σ̂ could be expressed by corresponding submatrices, i.e., Σff ,Σfy,Σyf , and
Σyy. The posterior distribution in Eq. 13 is equivalent to another multivariate Gaussian
distribution

p(f |y;θ) = 1

z
exp

(
−1

2
[f − f̄ ]⊤cov(f)−1[f − f̄ ]

)
(15)
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Figure 1. MTGP working flowchart for computation of aerodynamic load.

where z is a constant that is associated with hyperparameters; the posterior mean vector
f̄ and covariance matrix cov(f) are respectively given by

f̄ = ΣfyΣ
−1
yy y (16)

cov(f) = Σff −ΣfyΣ
−1
yy Σyf (17)

The hyper-parameters could be optimized using the maximum marginal likelihood
method, in which the marginal likelihood refers to the denominator in Eq. 13. Moreover,
as a compelling property of Gaussian Processes, the analytical expression for marginal
likelihood and its derivative is easily formulated. Hence, a gradient-based optimization
algorithm (e.g., L-BFGS) is selected for the maximum marginal likelihood in the aero-
dynamic load reconstruction process. With the optimized hyperparameters, one could
directly compute the posterior distribution of forces with Eq. 16 and 17.

A flowchart is summarized in Fig. 1 for the MTGP method, based on which we will
be able to conduct the unsteady aerodynamic load reconstruction.

RAILWAY VEHICLE MODEL DESCRIPTION

The full railway vehicle model constructed in this paper is schematically shown in
Fig. 2, which consists of a car body, two bogies, and four wheel-sets. The bogies and
car body exhibit five types of motion (lateral, vertical, roll, yaw, and pitch), while the
wheel-sets have four (lateral, vertical, roll, and yaw). The model is built based on the
following assumptions: (i) the vehicle is modeled as an assemblage of rigid bodies con-
nected by primary and secondary suspensions; (ii) the vehicle runs on a constant forward
velocity and the longitudinal (x-direction) motions of all rigid bodies are neglected; (iii)
all amplitudes of the motions for the system components remain small, and thus the
linear elastic theory applies; and (iv) the wheel-sets are linearly connected with the sub-
structures. The equation of motion of the train is formulated based on the Lagrangian
principle. Mass and stiffness matrices M,K can be obtained accordingly via the Euler-
Lagrange equation, that is

d
dt
∂L

∂ẋ
− ∂L

∂x
= 0 (18)

where x, ẋ ∈ R31 is the vector that includes all displacements and velocities of rigid
bodies in the system; L is the Lagrangian identity that could be formulated as the differ-
ence between kinetic energy and potential energy. Due to space limitations, the detailed
expressions of energies are eliminated. The damping matrix C is generated based on a
similar form of the stiffness matrix K.
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Figure 2. Schematic diagram of 31-DOF railway vehicle model.
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Figure 3. Frequency response function and Markov parameters between yc and yb1.

The frequency response function concerning any two DOFs could be calculated using
the formulated mass, damping, and stiffness matrices. Furthermore, the corresponding
Markov parameters can be computed using inverse Fourier transformation on the fre-
quency response functions, which would be used to construct the time-domain transfer
matrix H in Eq. 2. Fig. 3 shows an instance of the frequency response function and
Markov parameters between yc and yb1. In practice, these modal properties could be
directly measured through experimental modal analysis without any prior specification
over the vehicle model [7].



ANALYTICAL TEST CASE

In this section, we consider the scenario where two individual railway vehicles pass
each other in an open-air environment. We leverage the simulation results from the study
on transient pressure on vehicle surfaces by Huang et al. [1], which provides the pressure
time history for a single spatial point located at the center of the vehicle’s body. Notably,
significant fluctuations occur as the front and rear ends of the railway vehicle pass this
point.

We assume constant pressure along the vertical direction at each time step, while the
pressure in the longitudinal direction varies with time. Fig. 4 (a) illustrates the transient
pressure for each time step and vertical longitudinal coordinate. Next, we manually
convert the pressure at each time step into lateral force and yaw moment acting on the
vehicle body, as depicted in Fig. 4 (b).

To compute the railway vehicle dynamical system response, we employ the 4th order
Runge-Kutta method. We assume that the lateral and yaw acceleration of the two bogies
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Figure 4. Transient pressure distribution and equivalent lateral force and yaw moment acting on the
vehicle body.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time (s)

4

2

0

2

La
te

ra
l F

or
ce

 (N
)

1e4

(a)

Mean Ground Truth 95% confidence interval

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time (s)

2

1

0

1

Y
aw

 M
om

en
t (

N
m

) 1e5

(b)

Mean Ground Truth 95% confidence interval

Figure 5. Reconstructed lateral force and yaw moment using MTGP.



under aerodynamic load is available, with a sampling frequency of 750 Hz. Gaussian
white noise with a variance of 10−2 is added to the raw data. It is important to note that
the yaw motions of the two bogies are identical during the passing process; thus, only
yb1, ψb1, yb2 will be used for load reconstruction.

The MTGP method is then applied to reconstruct the lateral force and yaw moment
based on the flowchart in Fig. 1. The time-domain transfer matrix is constructed using
the modal parameters, with the measured acceleration data being the noise-contaminated
yb1, ψb1, yb2. Gaussian kernel functions serve as the covariance functions for both lateral
force and yaw moment. The resulting output is the posterior distribution of the aerody-
namic forces, a multivariate Gaussian distribution as demonstrated in Eq. 15. Fig. 5
reveals that the ground truths of lateral force and yaw moment fall within the 95% con-
fidence interval, successfully showcasing the applicability of MTGP in reconstructing
unsteady aerodynamic loads acting on railway vehicles.

CONCLUDING REMARKS

In this paper, we introduce a pioneering approach for quantifying unsteady aero-
dynamic forces exerted on railway vehicles, utilizing acquired acceleration data. Fur-
thermore, we present an innovative technique, MTGP, to address the ill-posed nature
of the reconstruction process, allowing for the consideration of measurement noise and
enhancing the precision of the reconstructed outcomes. As high-speed railway technol-
ogy advances and demands for operational safety increase, this innovative method holds
promise for its application in future railway vehicle aerodynamic testing and structural
operational safety monitoring systems.
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