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ABSTRACT 

 
This paper proposes a natural frequency and displacement ratio-based probabilistic 

damage identification method for bridges using the finite element (FE) model update. 
When the damage location is known, it can be detected from an appropriate damage- 
sensitive feature (DSF). However, damaged components are seldom known before 
inspections. This makes it difficult to find an appropriate DSF and damage identification 
is sometimes challenging. This paper aims to propose a method to solve this issue by 
integrating multiple DSFs, natural frequencies and displacement ratio, as a decision- 
level data fusion approach. They are complementary in terms of sensitivity to damage. 
In addition, probability density functions (PDFs) of structural parameters are estimated 
from PDFs of observed DSFs through the FE model update to consider errors and 
uncertainties in measurement data. An in-house model bridge experiment is carried out 
to investigate the feasibility. The results demonstrated that the two kinds of damages in 
a bearing and girder reproduced in the experiment were successfully identified without 
false positives even when these damages simultaneously occurred. 

 
 

INTRODUCTION 
 

In many countries, aged and damaged bridges requiring frequent inspections have 
been increasing for decades. In contrast, visual inspection is still a common approach 
although inspectors, especially experts, are insufficient. Therefore, developing 
laborsaving bridge-monitoring technologies is a keen technical issue. 

An appropriate damage-sensitive feature (DSF) enables us to easily detect damages 
when the location of the damage is known. For example, since the natural frequency of 
the first bending mode is sensitive to boundary conditions [1,2], they are appropriate for 
finding bearing defects. On the other hand, it is relatively insensitive to changes in 
flexural rigidity. Thus, displacement- and strain-related quantities are better features for 
detecting damage that reduces flexural rigidity, e.g., cracks in a girder [3-5]. However, 
the location of the damage is seldom known in practice. In addition, damage in multiple 
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locations can occur. In such cases, it is challenging to find an appropriate DSF. If 

damage is overlooked, it can lead to a fatal accident. 

To solve these issues above, this paper proposes a probabilistic approach to detect 

damaged bridge components using the finite element (FE) model update and multiple 

DSFs with different sensitivities. The FE model update is a technique to update 

structural parameters in an FE model so that the results of FE simulations match 

observations [6]. Updated structural parameters make it possible to estimate the integrity 

of structures. The FE model update adopting Bayesian inference, i.e., Bayesian model 

update, further estimates posterior probability distributions of structural parameters 

from observations and prior probability distributions [3,7,8]. It is a powerful method 

because uncertainties in DSFs can be considered in probability density functions (PDFs). 

If the change in the posterior probability distribution of a structural parameter is detected, 

it is possible to identify that the corresponding component is damaged. 

This paper adopts natural frequencies and the displacement ratio measured at two 

positions as DSFs. To utilize displacement in the monitoring of bridges, one needs to 

know the load. However, taking a ratio of displacement at two positions can eliminate 

load dependency [3-5]. Hence, displacement ratio and natural frequencies are 

independent of external forces and can be used to estimate the physical conditions of 

bridges. The displacement ratio is sensitive to changes in flexural rigidity [3]. On the 

other hand, the natural frequency of the first bending mode is sensitive to boundary 

conditions and less sensitive to flexural rigidity. Hence, the sensitivities of these two 

DSFs are complementary. Taking advantage of this property, this paper attempts to 

identify cracks in the girder and the bearing defect as representative bridge damage. 

 

 

DAMAGE IDENTIFICATION METHOD 

 

Damage components in bridges are identified from estimated PDFs of structural 

parameters. PDFs of the structural parameters are estimated as follows. The Markov 

Chain Monte Carlo (MCMC) method is adopted as a sampling method in the structural 

parameters space. The parameter space is defined as prior probability distributions. Each 

step of MCMC samples a set of structural parameters based on a random walk in the 

parameter space and judges whether the sampled set is acceptable using observed DSFs 

such, as the natural frequency of the first bending mode and the probability acceptance 

𝛼. For instance, in MCMC steps for the i-th DSF xi, 𝛼 is derived as 

 

𝛼 = min {1,
𝑝𝑖(𝑥𝑖2|𝜽2)

𝑝𝑖(𝑥𝑖1|𝜽1)
} , (1) 

 

where pi(.) is the PDF of the i-th DSF and xij|𝜽𝑗  (j = 1,2) is the DSF xi at a given set of 

structural parameters 𝜽𝑖 . If 𝛼 is higher than a random number u generated from the 

uniform distribution U[0,1], 𝜽2 is accepted and 𝜽1 is updated to 𝜽2. In the next step, 

new 𝜽2 is sampled by adding noise to 𝜽1, 𝜽1 + 𝒘, where elements of w are random 

numbers generated by Gaussian noise. After the MCMC process is completed, the 

distribution of accepted 𝜽2 in the parameter space is obtained. PDFs of each structural 

parameter are estimated from the marginal distribution along each axis. Finally, the 

posterior probability distribution of structural parameters for the DSF is obtained. 



The resultant posterior distribution of the k-th structural parameter 𝜃𝑘 according to 

all DSFs considered x, 𝑞(𝜃𝑘|𝒙), is derived as the product of the posterior distributions 

estimated from each DSF and the normalization, which can be considered as a decision-

level data fusion approach [9,10], 

 

𝑞(𝜃𝑘|𝒙) = ∏ 𝑞(𝜃𝑘|𝑥𝑖)

𝑖

∫ [∏ 𝑞(𝜃𝑘|𝑥𝑖)

𝑖

]  𝑑𝜃𝑘⁄ , (2) 

 

where 𝑞(𝜃𝑘|𝑥𝑖) is the posterior distribution of the k-th structural parameter based on the 

i-th DSF. In this paper, x corresponds to the three DSFs: natural frequencies of the first 

and second bending modes and displacement ratio. If 𝑞(𝜃𝑘|𝒙) is significantly different 

between the reference scenario and the other scenario, the bridge component 

corresponding to 𝜃𝑘 is expected to be damaged. 

 

 

EXPERIMENT 
 

To verify the proposed method, an in-house experiment is carried out with a model 

bridge. The model bridge is a 5.4 m-long “I”-shaped simply supported steel beam shown 

in Figure 1 (a). Natural frequencies and the displacement ratio are derived under a 

 
 

Figure 1. (a) General view of the model bridge, (b) elevation view, (c) roller bearing defect of A2 

support reproduced by inserting a wooden board instead of the roller, (d) three saw cuts on the girder 

as modeled cracks. 



traveling model vehicle. The mass of the model vehicle was fixed at 25 kg to increase 

the efficiency of the experiment. Accelerometers (ACCs) and displacement transducers 

were installed at positions denoted as S1, S2, S3, S4, and S5, as shown in Figure 1 (b). 

Artificial damage, such as cracks in beams and roller bearing defects, are introduced 

into the model bridge. The A2 support is originally the pin and roller. The roller bearing 

is removable. In the experiment, as shown in Figure (c), the roller bearing of the A2 

support is removed and a wooden plate is inserted instead to increase friction in the 

bridge axial direction, thereby reproducing the roller bearing failure. Cracks in the beam 

are modeled by three saw cuts to reduce the flexural rigidity as shown in Figure 1 (d). 

The saw cuts were introduced between S2 and S3 which resulted in approximately 20% 

reduction of the flexural rigidity of the beam. The intact state of the bridge is reproduced 

by reinforcing the saw cuts with steel plates. This paper refers to the bridge condition 

with the roller bearing defect of A2 support and saw cuts as the “crack+pinned scenario” 

and with the intact A2 support and reinforced girder as the “intact scenario”. Similarly, 

the “crack scenario” and “pinned scenario” are defined when either saw cuts or the roller 

bearing defect is adopted. 

Natural frequencies were identified from ACC data in the free vibration using the 

Frequency Domain Decomposition method [11,12]. Free vibrations were identified 

from the spectrogram of ACC data. Frequencies of the first and second bending modes 

were identified. The displacement ratio is derived from data around the maximum 

displacement ±0.5 seconds observed at S2 and S4 based on the method in [3]. 

Figure 2 shows the PDFs of the natural frequencies of the first and second bending 

modes and the displacement ratio in each scenario. These PDFs are estimated from 

histograms and the Kernel Density Estimation. In the natural frequency of the first 

bending mode for the “crack+pinned scenario”, the effects of the bearing defects that 

increase the natural frequency and saw cuts that decrease it are eliminated. Since the 

natural frequency of the second bending mode is weakly dependent on the boundary 

condition, natural frequencies in the crack and crack+pinned scenarios decrease. PDFs 

of displacement ratio shows significant difference depending on saw cuts. Hence, the 

displacement ratio is sensitive to changes in flexural rigidity, as expected. In contrast, it 

is not insensitive to the boundary condition. Hereafter, this paper focuses on the intact 

and crack+pinned scenarios. 

 

 

 
 

Figure 2. PDFs of observed quantities (a) first bending mode (b) second bending mode natural 

frequency, and (c) displacement ratio at S2 and S4 in each scenario. 

 



FE MODEL UPDATE 
 

For the FE model update, the bridge is modeled with beam elements using the 

software “Midas Civil”. As structural parameters, rotational spring stiffness at A1 and 

A2 support (kR1 and kR2, respectively) and Young’s modulus for each half span of the 

bridge (E1 and E2) instead of the flexural rigidity are adopted, as shown in Figure 3. 

The range of each structural parameter for simulations is defined as follows. 

According to pilot simulations, it is validated that natural frequencies are independent 

of kR1 and kR2 when either below 10-1 kN m/rad or above 106 kN m/rad. Therefore, the 

lower and upper limits of kR1 and kR2 were set as 10-1 and 106 kN m/rad, respectively. 

For E1 and E2, the upper and lower limit of the ranges are set as +10% and -25% of the 

nominal value of the steel, respectively. No damage increases flexural rigidity; thus, the 

narrower margin is adopted for the upper limit. The lower limit is based on the property 

of the model bridge: i.e., the flexural rigidity of the model bridge decreased by 25% of 

the nominal value due to the damage [13]. 

In the parameter space defined as the ranges above, sets of structural parameters are 

sampled 500 times using the Latin hypercube sampling. At each set of structural 

parameters, the natural frequencies of the first and second bending modes and the 

displacement ratio are simulated. Surrogate models for these DSFs are developed using 

500 results of simulations and the Gaussian Process Regression. The performance of 

the surrogate models is validated from the maximum percentage error of about 1%. 

From experimental results and the surrogate models, PDFs of the structural 

parameters are estimated through FE model update. To minimize additional 

uncertainties in estimated PDFs of structural parameters, prior probability distributions 

should be set as narrowly as possible considering information in structures and materials 

[7]. Hence, regarding kR1, which is not the target of detecting damage here, a narrow 

distribution is adopted as the prior distribution for kR1. The targets for detecting damages 

are kR2, E1, and E2, then this paper estimates only PDFs of these three parameters. 

Identifying roller-bearing defects is a reasonable approach because roller-bearing 

defects can affect the bridge more than pin-bearing defects. 

For the prior distribution of kR1, a uniform distribution that ranges from 101 to 102 

kN m/rad is adopted; log10 kR1 is sampled from U[1, 2]. The prior distribution of kR2 is 

set as follows. According to simulations, observed natural frequencies are never 

reproduced in simulations when kR2 is higher than 102 kN m/rad. Therefore, the prior 

distribution of log10 kR2 is set as U[-1, 2]. Prior distributions of E1 and E2 are assumed 

as U[0.75E0, 1.1E0], where E0 is the nominal value of Young’s modulus for steel. 

The total steps of MCMC were 50,000 and burn-in is initial 5,000 steps. The 

stationarity and Markov properties in the MCMC steps are validated from 

autocorrelation functions of parameters’ paths. The acceptance rate was around 30%. 

After the MCMC process, PDFs of kR2, E1, and E2 are estimated according to Equation 

 
 

Figure 3. Structural parameters in the FE model. 

 



(2). Figure 4 shows these results. Detailed discussion for them is described in the next 

section. 

 

 

RESULTS AND DISCUSSION 

 

Figure 4 indicates that structural parameters corresponding to damaged parts (kR2 

and E1) show a clear difference between the intact and crack+pinned scenarios. In 

contrast, PDFs of E2 are similar. To evaluate these differences quantitatively, the 

Kolmogorov–Smirnov test is applied. The null/alternative hypotheses are that 

populations of the two distributions are different/the same. In other words, the difference 

between the two distributions is statistically significant when the alternative hypothesis 

is accepted. The significance level is adopted as 5%. 

The p-values of the Kolmogorov–Smirnov test for each structural parameter PDF 

are listed in Table I. According to these results, differences in PDFs of kR2 and E1 

between the intact and crack+pinned scenarios are statistically significant. The bridge 

components corresponding to these parameters are damaged in the model bridge. On 

the other hand, PDFs of E2 are not statistically significant. Hence, all damaged 

components are successfully identified without false positives or negatives. Moreover, 

we confirmed that all damaged components are identified even in other scenarios. The 

 
 

Figure 4. Estimated PDFs of structural parameters (a) kR2, (b) E1, and (c) E2 in each scenario. 

 

TABLE I. P-VALUES OF THE KOLMOGOROV–SMIRNOV TEST FOR THE 

RESULTS OF FIGURE 4. 

 kR2 PDFs E1 PDFs E2 PDFs 

p-value 0.0013 3.6×10-7 0.078 

 

TABLE II. SUMMARY OF THE DAMAGE IDENTIFICATION IN EACH SCENARIO 

DEPENDING ON DSFS. 

Scenario Natural freqs. Disp. ratio Natural freqs. & Disp. ratio 

Crack+Pinned N Y/FP Y 

Crack N Y/FP Y 

Pinned Y/FP N Y 
“Y” INDICATES THAT ALL DAMAGED COMPONENTS ARE SUCCESSFULLY IDENTIFIED 

WITHOUT FALSE POSITIVES. “Y/FP” INDICATES THAT DAMAGED COMPONENTS ARE 

IDENTIFIED BUT INCLUDING FALSE POSITIVES. “N” INDICATES THAT THE IDENTIFICATION IS 

FAILED. 

 



proposed method works successfully and detects any of damage scenarios composed of 

cracks and bearing defects in the experiment. 

The sensitivity of each DSF to damage detection is also investigated. Table II 

summarizes damage identification results in each scenario depending on each DSF. 

Figure 5 shows estimated PDFs of structural parameters, kR2, E1, E2, in the intact and 

crack+pinned scenarios. Figures 5 (a), (b), and (c) show estimated PDFs of the structural 

parameters considering natural frequencies as a target physical response in the FE model 

update, while Figures 5 (d), (e), and (f) show those PDFs considering the displacement 

ratio as a target physical response. It failed to identify the roller bearing defect in the 

crack+pinned scenario when natural frequencies alone are used as can be seen in Figure 

5 (a). Damage identification in the pinned scenario also failed when displacement ratio 

alone is used. Figure 5 (f) demonstrates that E2 increases in the crack+pinned scenario 

whereas the left half girder corresponding to E2 is intact. This result does not coincide 

with the actual bridge condition, i.e., false positive. Moreover, scatters of the PDFs in 

Figure 5, except for Figure 5 (a), are higher than those in Figure 4. It indicates that 

uncertainties in estimated structural parameters PDFs can be reduced by integrating 

multiple DSFs. 

 
 

CONCLUSIONS 

 

This study investigates the feasibility of the probabilistic damage identification 

method for bridges by integrating multiple damage-sensitive features (DSFs). Natural 

frequencies and the displacement ratio are used as features. Using these DSFs, PDFs of 

structural parameters are estimated based on the FE model update in the in-house 

experiment using the model bridge. The proposed method successfully identifies all 

 
 

Figure 5. Estimated PDFs of structural parameters in the intact and crack+pinned scenarios derived 

from (top row, (a)–(c)) natural frequencies of the first and second bending modes and (bottom row, 

(d)–(f)) displacement ratio. 

 



damaged components by detecting changes in the estimated PDFs. The main results are 

as follows. 

1. PDFs of features in each scenario show their sensitivities to damage. The 

natural frequency of the first bending mode is sensitive to the boundary 

condition. In contrast, the natural frequency of the second bending mode is 

relatively, and the displacement ratio is strongly sensitive to flexural rigidity. 

2. PDFs of structural parameters in the intact and crack+pinned scenarios are 

estimated from natural frequencies and the displacement ratio. The 

Kolmogorov–Smirnov test is applied to check the statistical significance of the 

differences in the PDFs. At the significance level of 5%, all structural 

parameters corresponding to damaged components in the crack+pinned 

scenario are identified without false positives. The same results were obtained 

in other damage scenarios. 

3. When structural parameters PDFs are estimated from either natural frequencies 

or displacement ratio alone, it failed to detect damage.  

4. Uncertainties in the estimated PDFs can be reduced when utilizing multiple 

DSFs.  
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