Natural Frequency and Displacement Ratio
Based Probabilistic Damage Identification
for Bridges Using FE Model Update

YOSHIYUKI YAJIMA, MURTUZA PETLADWALA,
TAKAHIRO KUMURA and CHUL-WOO KIM

ABSTRACT

This paper proposes a natural frequency and displacement ratio-based probabilistic
damage identification method for bridges using the finite element (FE) model update.
When the damage location is known, it can be detected from an appropriate damage-
sensitive feature (DSF). However, damaged components are seldom known before
inspections. This makes it difficult to find an appropriate DSF and damage identification
is sometimes challenging. This paper aims to propose a method to solve this issue by
integrating multiple DSFs, natural frequencies and displacement ratio, as a decision-
level data fusion approach. They are complementary in terms of sensitivity to damage.
In addition, probability density functions (PDFs) of structural parameters are estimated
from PDFs of observed DSFs through the FE model update to consider errors and
uncertainties in measurement data. An in-house model bridge experiment is carried out
to investigate the feasibility. The results demonstrated that the two kinds of damages in
a bearing and girder reproduced in the experiment were successfully identified without
false positives even when these damages simultaneously occurred.

INTRODUCTION

In many countries, aged and damaged bridges requiring frequent inspections have
been increasing for decades. In contrast, visual inspection is still a common approach
although inspectors, especially experts, are insufficient. Therefore, developing
laborsaving bridge-monitoring technologies is a keen technical issue.

An appropriate damage-sensitive feature (DSF) enables us to easily detect damages
when the location of the damage is known. For example, since the natural frequency of
the first bending mode is sensitive to boundary conditions [1,2], they are appropriate for
finding bearing defects. On the other hand, it is relatively insensitive to changes in
flexural rigidity. Thus, displacement- and strain-related quantities are better features for
detecting damage that reduces flexural rigidity, e.g., cracks in a girder [3-5]. However,
the location of the damage is seldom known in practice. In addition, damage in multiple
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locations can occur. In such cases, it is challenging to find an appropriate DSF. If
damage is overlooked, it can lead to a fatal accident.

To solve these issues above, this paper proposes a probabilistic approach to detect
damaged bridge components using the finite element (FE) model update and multiple
DSFs with different sensitivities. The FE model update is a technique to update
structural parameters in an FE model so that the results of FE simulations match
observations [6]. Updated structural parameters make it possible to estimate the integrity
of structures. The FE model update adopting Bayesian inference, i.e., Bayesian model
update, further estimates posterior probability distributions of structural parameters
from observations and prior probability distributions [3,7,8]. It is a powerful method
because uncertainties in DSFs can be considered in probability density functions (PDFs).
If the change in the posterior probability distribution of a structural parameter is detected,
it is possible to identify that the corresponding component is damaged.

This paper adopts natural frequencies and the displacement ratio measured at two
positions as DSFs. To utilize displacement in the monitoring of bridges, one needs to
know the load. However, taking a ratio of displacement at two positions can eliminate
load dependency [3-5]. Hence, displacement ratio and natural frequencies are
independent of external forces and can be used to estimate the physical conditions of
bridges. The displacement ratio is sensitive to changes in flexural rigidity [3]. On the
other hand, the natural frequency of the first bending mode is sensitive to boundary
conditions and less sensitive to flexural rigidity. Hence, the sensitivities of these two
DSFs are complementary. Taking advantage of this property, this paper attempts to
identify cracks in the girder and the bearing defect as representative bridge damage.

DAMAGE IDENTIFICATION METHOD

Damage components in bridges are identified from estimated PDFs of structural
parameters. PDFs of the structural parameters are estimated as follows. The Markov
Chain Monte Carlo (MCMC) method is adopted as a sampling method in the structural
parameters space. The parameter space is defined as prior probability distributions. Each
step of MCMC samples a set of structural parameters based on a random walk in the
parameter space and judges whether the sampled set is acceptable using observed DSFs
such, as the natural frequency of the first bending mode and the probability acceptance
a. For instance, in MCMC steps for the i-th DSF x;, a is derived as

o pi(xi216>)
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where pi(.) is the PDF of the i-th DSF and x;j|@; (j = 1,2) is the DSF xi at a given set of
structural parameters 6;. If « is higher than a random number u generated from the
uniform distribution U[0,1], 8, is accepted and @, is updated to 8,. In the next step,
new 6, is sampled by adding noise to 84, 8, + w, where elements of w are random
numbers generated by Gaussian noise. After the MCMC process is completed, the
distribution of accepted @, in the parameter space is obtained. PDFs of each structural
parameter are estimated from the marginal distribution along each axis. Finally, the
posterior probability distribution of structural parameters for the DSF is obtained.



The resultant posterior distribution of the k-th structural parameter 6, according to
all DSFs considered X, q(68x|x), is derived as the product of the posterior distributions
estimated from each DSF and the normalization, which can be considered as a decision-
level data fusion approach [9,10],

1@ = [ Jaeu /| []_[ q(ek|xi>] 6. @

where q(6y|x;) is the posterior distribution of the k-th structural parameter based on the
i-th DSF. In this paper, x corresponds to the three DSFs: natural frequencies of the first
and second bending modes and displacement ratio. If q(6,|x) is significantly different
between the reference scenario and the other scenario, the bridge component
corresponding to 6, is expected to be damaged.

EXPERIMENT

To verify the proposed method, an in-house experiment is carried out with a model
bridge. The model bridge is a 5.4 m-long “I”’-shaped simply supported steel beam shown
in Figure 1 (a). Natural frequencies and the displacement ratio are derived under a
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Figure 1. (a) General view of the model bridge, (b) elevation view, (c) roller bearing defect of A2
support reproduced by inserting a wooden board instead of the roller, (d) three saw cuts on the girder
as modeled cracks.
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Figure 2. PDFs of observed quantities (a) first bending mode (b) second bending mode natural
frequency, and (c) displacement ratio at S2 and S4 in each scenario.

traveling model vehicle. The mass of the model vehicle was fixed at 25 kg to increase
the efficiency of the experiment. Accelerometers (ACCs) and displacement transducers
were installed at positions denoted as S1, S2, S3, S4, and S5, as shown in Figure 1 (b).

Artificial damage, such as cracks in beams and roller bearing defects, are introduced
into the model bridge. The A2 support is originally the pin and roller. The roller bearing
is removable. In the experiment, as shown in Figure (c), the roller bearing of the A2
support is removed and a wooden plate is inserted instead to increase friction in the
bridge axial direction, thereby reproducing the roller bearing failure. Cracks in the beam
are modeled by three saw cuts to reduce the flexural rigidity as shown in Figure 1 (d).
The saw cuts were introduced between S2 and S3 which resulted in approximately 20%
reduction of the flexural rigidity of the beam. The intact state of the bridge is reproduced
by reinforcing the saw cuts with steel plates. This paper refers to the bridge condition
with the roller bearing defect of A2 support and saw cuts as the “crack+pinned scenario”
and with the intact A2 support and reinforced girder as the “intact scenario”. Similarly,
the “crack scenario” and “pinned scenario” are defined when either saw cuts or the roller
bearing defect is adopted.

Natural frequencies were identified from ACC data in the free vibration using the
Frequency Domain Decomposition method [11,12]. Free vibrations were identified
from the spectrogram of ACC data. Frequencies of the first and second bending modes
were identified. The displacement ratio is derived from data around the maximum
displacement +0.5 seconds observed at S2 and S4 based on the method in [3].

Figure 2 shows the PDFs of the natural frequencies of the first and second bending
modes and the displacement ratio in each scenario. These PDFs are estimated from
histograms and the Kernel Density Estimation. In the natural frequency of the first
bending mode for the “crack+pinned scenario”, the effects of the bearing defects that
increase the natural frequency and saw cuts that decrease it are eliminated. Since the
natural frequency of the second bending mode is weakly dependent on the boundary
condition, natural frequencies in the crack and crack+pinned scenarios decrease. PDFs
of displacement ratio shows significant difference depending on saw cuts. Hence, the
displacement ratio is sensitive to changes in flexural rigidity, as expected. In contrast, it
is not insensitive to the boundary condition. Hereafter, this paper focuses on the intact
and crack+pinned scenarios.
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Figure 3. Structural parameters in the FE model.

FE MODEL UPDATE

For the FE model update, the bridge is modeled with beam elements using the
software “Midas Civil”. As structural parameters, rotational spring stiffness at A1 and
A2 support (kr1 and kro, respectively) and Young’s modulus for each half span of the
bridge (E1 and E) instead of the flexural rigidity are adopted, as shown in Figure 3.

The range of each structural parameter for simulations is defined as follows.
According to pilot simulations, it is validated that natural frequencies are independent
of kr1 and krz when either below 10 kKN m/rad or above 10° kN m/rad. Therefore, the
lower and upper limits of kr1 and krz were set as 10 and 10° kN m/rad, respectively.
For E1 and E, the upper and lower limit of the ranges are set as +10% and -25% of the
nominal value of the steel, respectively. No damage increases flexural rigidity; thus, the
narrower margin is adopted for the upper limit. The lower limit is based on the property
of the model bridge: i.e., the flexural rigidity of the model bridge decreased by 25% of
the nominal value due to the damage [13].

In the parameter space defined as the ranges above, sets of structural parameters are
sampled 500 times using the Latin hypercube sampling. At each set of structural
parameters, the natural frequencies of the first and second bending modes and the
displacement ratio are simulated. Surrogate models for these DSFs are developed using
500 results of simulations and the Gaussian Process Regression. The performance of
the surrogate models is validated from the maximum percentage error of about 1%.

From experimental results and the surrogate models, PDFs of the structural
parameters are estimated through FE model update. To minimize additional
uncertainties in estimated PDFs of structural parameters, prior probability distributions
should be set as narrowly as possible considering information in structures and materials
[7]. Hence, regarding kr1, which is not the target of detecting damage here, a narrow
distribution is adopted as the prior distribution for kr1. The targets for detecting damages
are kro, E1, and Eo, then this paper estimates only PDFs of these three parameters.
Identifying roller-bearing defects is a reasonable approach because roller-bearing
defects can affect the bridge more than pin-bearing defects.

For the prior distribution of krs, a uniform distribution that ranges from 10 to 102
kN m/rad is adopted; logio kr1 is sampled from U[1, 2]. The prior distribution of kr> is
set as follows. According to simulations, observed natural frequencies are never
reproduced in simulations when kg; is higher than 102 kN m/rad. Therefore, the prior
distribution of logio kro is set as U[-1, 2]. Prior distributions of E; and E; are assumed
as U[0.75Eo, 1.1Eo], where Ep is the nominal value of Young’s modulus for steel.

The total steps of MCMC were 50,000 and burn-in is initial 5,000 steps. The
stationarity and Markov properties in the MCMC steps are validated from
autocorrelation functions of parameters’ paths. The acceptance rate was around 30%.
After the MCMC process, PDFs of krz, E1, and E; are estimated according to Equation
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Figure 4. Estimated PDFs of structural parameters (a) krz, (b) E1, and (c) Ez in each scenario.

TABLE I. P-VALUES OF THE KOLMOGOROV-SMIRNOV TEST FOR THE
RESULTS OF FIGURE 4.
kr2 PDFs E:1PDFs E>PDFs
p-value 0.0013 3.6x107 0.078

TABLE Il. SUMMARY OF THE DAMAGE IDENTIFICATION IN EACH SCENARIO
DEPENDING ON DSFS.

Scenario Natural fregs. Disp. ratio Natural fregs. & Disp. ratio
Crack+Pinned N Y/FP Y
Crack N Y/FP Y
Pinned Y/FP N Y

“Y” INDICATES THAT ALL DAMAGED COMPONENTS ARE SUCCESSFULLY IDENTIFIED
WITHOUT FALSE POSITIVES. “Y/FP” INDICATES THAT DAMAGED COMPONENTS ARE
IDENTIFIED BUT INCLUDING FALSE POSITIVES. “N” INDICATES THAT THE IDENTIFICATION IS
FAILED.

(2). Figure 4 shows these results. Detailed discussion for them is described in the next
section.

RESULTS AND DISCUSSION

Figure 4 indicates that structural parameters corresponding to damaged parts (kr2
and Ei) show a clear difference between the intact and crack+pinned scenarios. In
contrast, PDFs of E» are similar. To evaluate these differences quantitatively, the
Kolmogorov—-Smirnov test is applied. The null/alternative hypotheses are that
populations of the two distributions are different/the same. In other words, the difference
between the two distributions is statistically significant when the alternative hypothesis
is accepted. The significance level is adopted as 5%.

The p-values of the Kolmogorov—-Smirnov test for each structural parameter PDF
are listed in Table 1. According to these results, differences in PDFs of kr. and E;
between the intact and crack+pinned scenarios are statistically significant. The bridge
components corresponding to these parameters are damaged in the model bridge. On
the other hand, PDFs of E> are not statistically significant. Hence, all damaged
components are successfully identified without false positives or negatives. Moreover,
we confirmed that all damaged components are identified even in other scenarios. The



U.SE\\.\l..|\\...__.|\|.
75_ (d} = [ntact -7.,} (b)

Crack+Pinned _; -

e e
=
T
1

e
in

Probability density function

s o = = o

=075

Probability density functio

= = = o
a2

= h
= =

PR B R P P PR T RPN - P I B |
G 0 1.6 1.8 2.0 22 M0 1.8 2.0 22

logig (kg2 [kN m/rad]) E| [x10% kN/m?] E, [x10% kN/m?)

Figure 5. Estimated PDFs of structural parameters in the intact and crack+pinned scenarios derived
from (top row, (a)—(c)) natural frequencies of the first and second bending modes and (bottom row,
(d)—(f)) displacement ratio.

proposed method works successfully and detects any of damage scenarios composed of
cracks and bearing defects in the experiment.

The sensitivity of each DSF to damage detection is also investigated. Table 1l
summarizes damage identification results in each scenario depending on each DSF.
Figure 5 shows estimated PDFs of structural parameters, krz, E1, E2, in the intact and
crack+pinned scenarios. Figures 5 (a), (b), and (c) show estimated PDFs of the structural
parameters considering natural frequencies as a target physical response in the FE model
update, while Figures 5 (d), (e), and (f) show those PDFs considering the displacement
ratio as a target physical response. It failed to identify the roller bearing defect in the
crack+pinned scenario when natural frequencies alone are used as can be seen in Figure
5 (a). Damage identification in the pinned scenario also failed when displacement ratio
alone is used. Figure 5 (f) demonstrates that E> increases in the crack+pinned scenario
whereas the left half girder corresponding to E; is intact. This result does not coincide
with the actual bridge condition, i.e., false positive. Moreover, scatters of the PDFs in
Figure 5, except for Figure 5 (a), are higher than those in Figure 4. It indicates that
uncertainties in estimated structural parameters PDFs can be reduced by integrating
multiple DSFs.

CONCLUSIONS

This study investigates the feasibility of the probabilistic damage identification
method for bridges by integrating multiple damage-sensitive features (DSFs). Natural
frequencies and the displacement ratio are used as features. Using these DSFs, PDFs of
structural parameters are estimated based on the FE model update in the in-house
experiment using the model bridge. The proposed method successfully identifies all



damaged components by detecting changes in the estimated PDFs. The main results are
as follows.

1. PDFs of features in each scenario show their sensitivities to damage. The
natural frequency of the first bending mode is sensitive to the boundary
condition. In contrast, the natural frequency of the second bending mode is
relatively, and the displacement ratio is strongly sensitive to flexural rigidity.

2. PDFs of structural parameters in the intact and crack+pinned scenarios are
estimated from natural frequencies and the displacement ratio. The
Kolmogorov—-Smirnov test is applied to check the statistical significance of the
differences in the PDFs. At the significance level of 5%, all structural
parameters corresponding to damaged components in the crack+pinned
scenario are identified without false positives. The same results were obtained
in other damage scenarios.

3. When structural parameters PDFs are estimated from either natural frequencies
or displacement ratio alone, it failed to detect damage.

4. Uncertainties in the estimated PDFs can be reduced when utilizing multiple
DSFs.
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