
ABSTRACT 

Recently, there has been a growing interest in the development of intelligent label- 
free structural damage identification methods that utilize physics-informed neural net- 
works (PINNs). However, penalizing the governing equation of training data is computa- 
tionally time-consuming since the existence of high-order partial derivatives. To address 
this issue, a damage identification method for isotropic and homogeneous thin plates is 
proposed in this paper that utilizes transfer learning physics-informed neural networks 
(TL-PINNs). TL-PINNs are efficient PINNs that solve inverse problems by leverag- 
ing transfer learning. Transfer learning is a machine learning technique that leverages 
knowledge from a source task to enhance performance on a related but different target 
task. It involves reusing a source model trained on a source task and then fine-tuning it 
to a target model with a target task. In the proposed method, the source model is trained 
to minimize the mismatch between training data and its predictions. Then, it is fine- 
tuned as the target model by minimizing both the mismatch between training data and 
its predictions as well as residuals that penalize the governing equation of isotropic and 
homogeneous thin plates. It is resulting in fewer iterations being required in training to 
penalize the governing equation than those in PINNs, which is time-consuming for high- 
order partial derivatives using automatic differentiation. Hence, TL-PINNs have a sub- 
stantial reduction in computational time compared to PINNs for damage identification. 
A trained TL-PINN from a measured flexural guided wavefield is referred to as a pseudo- 
pristine model since it can generate a wavefield that approximates that governed by an 
isotropic and homogeneous thin plate. This unique functionality arises from penalizing 
the governing equation in the target model and the fact that the governing equation does 
not consider the existence of the damage. Any local anomalies in the measured wavefield 
can be isolated by comparing them with the wavefield generated by the pseudo-pristine 
model and then intensified using the Teager energy operator. An accumulative damage 
index is formulated, and the damage can be identified within neighborhoods with high 
index values. The effectiveness of the proposed method is demonstrated through a nu- 
merical investigation. A parameter study is also conducted to investigate the robustness 
of TL-PINNs with different hyper-parameters. 
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INTRODUCTION

Engineering structures, such as buildings, bridges, and tunnels, are subjected to long-
term environmental effects and operational loads that can cause unexpected structural
damage. This damage can significantly reduce the service life of these structures, mak-
ing it important to monitor and identify it in a timely manner. In recent years, the devel-
opment of graphics processing units and sensing technology has enabled the widespread
use of machine learning, particularly deep learning algorithms, in the field of structural
damage identification. These algorithms have been applied to various methods of dam-
age identification, including vibration-based methods, guided wavefield-based methods,
acoustic emission-based methods, etc. The use of machine learning in structural damage
identification has the potential to improve the accuracy and robustness of these methods,
enabling more effective monitoring of engineering structures.

The majority of machine learning-based damage identification methods are classified
as supervised learning, and as such, the utilization of labeled datasets comprising both
training data and corresponding labels regarding the damage is a necessity [1]. In other
words, the training process requires vibration data collected for the undamaged struc-
ture as well as the data measured under several structural damage scenarios. However,
obtaining such datasets can prove to be a challenging task, as they may not be read-
ily available or the process of acquiring them may be time-consuming. This presents a
significant limitation in the development and implementation of machine learning-based
methods. In recent years, the development of physics-informed neural networks (PINNs)
has led to the emergence of label-free damage identification methods based on machine
learning [2,3]. These methods do not rely on labeled datasets, making them a promising
alternative for damage identification in practice. Shukla et al. [2] used a PINN for iden-
tifying surface-breaking cracks in a metal plate by using measured ultrasonic surface
acoustic waves of the metal as the target. The estimated wave velocity field of the metal
plate obtained from the PINN served as a damage index. This method demonstrated the
feasibility of using PINNs for damage identification in metal structures. Rathod et al. [3]
used a trained PINN to identify changes in wave velocity in a rod. The results show that
a 50% reduction in Young’s modulus in the mid-part of the rod can be represented in the
identified wave velocity along the rod, but the sharp variations in wave velocity are not
captured.

Transfer learning physics-informed neural networks (TL-PINNs) are efficient PINNs
that solve inverse problems by leveraging transfer learning. In the TL-PINNs, a source
model is first trained to minimize the mismatch between training data and its predic-
tions. Then, it is fine-tuned as a target model by minimizing both the mismatch between
training data and its predictions as well as residuals that penalize the governing equation
of training data. It is resulting in fewer iterations being required in training to penalize
the governing equation than those in PINNs, which is time-consuming for high-order
partial derivatives using automatic differentiation. Hence, TL-PINNs have a substantial
reduction in computational time compared to PINNs for damage identification.

In this study, a baseline-free flexural guided wavefield-based damage identification
method using TL-PINNs is proposed for plate structures. It assumes a pristine plate
structure as an isotropic and homogeneous thin plate and it can be accurately modeled
by the Kirchhoff-Love plate theory. A TL-PINN is composed of a source model trained



to minimize the mismatch between predicted and training data, and the source model
is fine-tuned as a target model by minimizing the mismatch between training data and
its predictions, in addition to residuals that penalize the governing equation of isotropic
and homogeneous thin plates. The characteristic parameter in the governing equation,
which determines the linear relationship between phase velocity and wavenumber, is es-
timated during the target model training as an inverse problem. The well-trained target
model to obtain a so-called pseudo-pristine plate model. Local anomalies are isolated
by differences between the measured wavefield and corresponding predictions by the
pseudo-pristine plate model, and they are then intensified by calculating associate two-
dimensional Teager energy for each time instant. Finally, an accumulative damage index
is formulated using the two-dimensional Teager energy in the time domain. Damage
locations and extent can be identified in neighborhoods with high damage index values.
The effectiveness of the proposed method is demonstrated through a numerical investi-
gation. A parameter study is also conducted to investigate the robustness of TL-PINNs
with different hyper-parameters.

METHODOLOGY

TL-PINNs for isotropic and homogeneous thin plates in inverse problems

Consider an isotropic and homogeneous thin plate governed by the Kirchhoff-Love
plate theory, its flexural motion that undergoes free vibrations can be expressed as [4]
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denotes a characteristic parameter that dictates the linear relationship between the phase
velocity and the wavenumber of the plate, in which D, ρ, and h are flexural stiffness,
density, and thickness of the plate, respectively.
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Figure 1. Schematic flowchart of the TL-PINN for an isotropic, homogeneous thin plate to solve the
inverse problem. In the convergence criterion shown in the decision box, maxit is the maximum number
of iterations and ε is the predefined tolerances of the L-BFGS optimizer.
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denote the residual loss term and data loss term for N
(
x, y, t;θT

)
, respectively, λ is

weighting to adjust the weights of Lr

(
θT

)
and Ld

(
θT

)
in L

(
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)
. In training the TL-

PINN, the value of α is updated at each iteration alongside θT . A schematic flowchart
for training the TL-PINN is shown in Fig. 1.

Damage identification process

Damage in an isotropic and homogeneous thin plate can lead to local flexural motion
anomalies at the site of damage. However, these local anomalies may not be directly
discernible from the measured flexural motion, denoted by umed (x, y, t), when the dam-
age extent is small. In other words, umed (x, y, t) of such a damaged plate can be highly
similar to its pristine counterpart.

Coincidentally, the governing equation of a plate in N
(
x, y, t;θT

)
corresponds to

a pristine one, and it cannot be used to predict the response of a damaged one. Fur-



ther, when N
(
x, y, t;θT

)
is trained using umed (x, y, t) of the damaged plate its out-

put can be deemed corresponding to a pristine plate. Hence, when N
(
x, y, t;θT

)
is

well-trained, it can be referred to as a pseudo-pristine plate model. Its predicted out-
put uθT (x, y, t) can be used to isolate local anomalies on umed (x, y, t). The differences
between umed (x, y, t) and uθT (x, y, t) can be obtained:

△u (x, y, t) = umed (x, y, t)− uθT (x, y, t) (7)
by which the local anomalies in umed (x, y, t) are isolated to a certain extent when small-
extent damage exists. However, non-negligible discrepancies between umed (x, y, t) and
uθT (x, y, t) away from the damage can mask the local anomalies in △u (x, y, t). To
intensify local anomalies and suppress discrepancies away from the damage, the two-
dimensional Teager energy of △u (x, y, t), denoted by E (xi, yj, tk), is calculated for
each tk, and its discrete form can be expressed by [6]
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
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−△u (xi, yj−1, tk)△u (xi, yj+1, tk) , i = 2, 3, ..., Nx − 1; j = 2, 3, ..., Ny − 1

= 0, i = 1, Nx; j = 1, Ny

(8)

where k = 1, 2, ..., Nt, in which Nx, Ny and Nt are the number of discrete point of
△u (x, y, t) along x-, y- and t-axes, respectively.

Since E (xi, yj, tk) at certain tk can be insensitive to damage at certain location(s)
or it cannot completely indicate its extent [7], there is no guarantee that one or a few
E (xi, yj, tk) can well identify the damage. Hence, an accumulative damage index is
constructed:

D (xi, yj) =

∑Nt

k=1 |E (xi, yj, tk)|
max

({∑Nt

k=1 |E (xi, yj, tk)| : i ∈ [1, Nx] , j ∈ [1, Ny]
}) (9)

where max (·) and |·| denote the maximum and absolute value functions, respectively. It
is worth noting that D (xi, yj) ∈ [0, 1], and damage can be identified in neighborhoods
with high values of D (xi, yj).

A flowchart summarizing the proposed damage identification method is presented in
Fig. 2.

NUMERICAL INVESTIGATION

In this section, a numerical simulation of a plate with damage in the form of two
square thickness reduction areas is conducted to investigate the effectiveness of the pro-
posed damage identification method.

Numerical model of an aluminum plate

A free-free-free-free plate with dimensions of 150 mm × 150 mm and a thickness of
3 mm is simulated using finite element software. The plate is made of aluminum 6061-
T6 with the mass density of 2700 kg/m3, Young’s modulus of 68.9 GPa, and Poisson’s
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Figure 2. Flowchart of the proposed damage identification method.

ratio of 0.33. Two one-sided square thickness reduction areas with side lengths of 9
mm and depths of 0.3 mm are introduced to the plate and centered at (34.5, 64.5) and
(64.5, 34.5) mm.

The finite element model of the plate is constructed with linear eight-node brick
(C3D8R) elements. The plate is assumed to have zero initial conditions and is subjected
to an excitation force applied to its lower left corner (0.0, 0.0) mm. This force can be
described by a five-count wave packet with the magnitude and central frequency of the
force being 0.5 N and 30 kHz, respectively [8].

Numerical damage identification

The proposed damage identification method is initially evaluated using a flexural
guided wavefield, umed (x, y, t), on a grid consisting of 101 × 101 measurement points
evenly distributed on the plate. The excitation starts at t = 0 s and ends at t = 0.1672
ms, and the wavefield is then measured with a sampling frequency of 1.25 MHz for
t ∈ [0.1672, 0.248] ms, resulting in a total of 101 snapshots of the free response of the
plate. The measured umed (x, y, t) is scaled and the scaled one is denoted by ūmed (x̄, ȳ, t̄)
where ūmed ∈ [−1, 1], x̄ ∈ [0, 1], ȳ ∈ [0, 1], and t̄ ∈ [0, 1].

Four cases with different hyper-parameters are studied, including in the number of
neurons of each hidden layer, activation function, values of NS , NT and λ, for construct-
ing a three-layer fully-connected neural network, the hyper-parameters are listed in Ta-
ble I. The same training dataset is used for training N

(
x̄, ȳ, t̄;θS

)
and N

(
x̄, ȳ, t̄;θT

)
in

each case. The source model N
(
x, y, t;θS

)
is trained by using the Adam optimizer with

a learning rate of 0.001 for the number of iterations being 100, 000, and N
(
x, y, t;θT

)
,

is trained by using the L-BFGS optimizer with a learning rate of 0.1 for the maximum
number of iterations being 50, 000. The tolerances of the L-BFGS optimizer and other
parameters of these two optimizers are using default values in PyTorch.



TABLE I. Hyper-parameters of the neural networks in the numerical investigation.

CASE NUMBER OF NEURONS ACTIVATION FUNCTION NS NT λ

Case 1 50 sine 20,000 20,000 10, 000
Case 2 50 sine 50,000 50,000 10, 000
Case 3 50 hyperbolic tangent 20,000 20,000 10, 000
Case 4 100 sine 20,000 20,000 10, 000

Numerical verification results

Four pseudo-pristine plate models are obtained after the training of N
(
x, y, t;θT

)
.

The predicted wavefields, uθT (x̄, ȳ, t̄), with dimensions same as those of ūmed (x̄, ȳ, t̄),
are obtained using pseudo-pristine plate models. The relative L2 errors R are used to
further examine the relation between △u (x̄, ȳ, t̄) and ūmed (x̄i, ȳj, t̄k) for each case. The
values of R for cases 1 to 4 are 3.11 %, 2.82 %, 5.35 % and 2.16 %, respectively. It
can be observed that the values of R for the four cases are relative small, indicating that
uθT (x̄, ȳ, t̄) well approximates ūmed (x̄i, ȳj, t̄k) and the difference could derive from the
existence of the damage.

The Teager energy E (x̄i, ȳj, t̄k) is calculated using Eq. (8) and then D (x̄i, ȳj) for
each case is calculated using Eq. (9), as shown in Fig. 3. It can be seen that high
D (x̄i, ȳj) values exist within the damage areas for these four cases. The location and
extent of the damage areas can be accurately identified, despite the different hyper-
parameters in each case. To quantitatively evaluate the qualities of the identification
results in the four cases, a percentage energy ratio χ is applied [7]. The energy ratio
χ ∈ [0, 100%] and a higher χ value indicates a better damage identification results in a
lower disturbance from false positive identification results and measurement noise/errors
beyond the damaged area(s). The values of χ for cases 1 to 4 are 17.66 %, 19.81 %, 11.91
% and 47.53 %, respectively. It can be observed that the value of χ for each case is neg-
atively correlated with that of R. Specifically, case 4 has the highest value of χ, while
case 3 has the lowest value of χ. Hence, the lower values of R indicate better results for
damage identification.

CONCLUDING REMARKS

Case 1 Case 2 Case 3 Case 4

Figure 3. Damage indexes D (x̄i, ȳj) in the numerical investigation. Edges of the damaged areas are
depicted in black lines.



In this study, a novel baseline-free structural damage method for plate structures was
developed using TL-PINNs. Pseudo-pristine plate models were constructed using TL-
PINNs from measured flexural guided wavefields of damaged plate structures. Local
anomalies caused by the existence of damage in flexural guided wavefields are isolated
by differences between the measured flexural guided wavefields and corresponding pre-
dictions from pseudo-pristine plate models, and they are intensified by the Teager en-
ergy at each time instance. The effectiveness of the proposed damage identification
method was evaluated through a numerical investigation. It was found that: (1) the pro-
posed method can accurately identify the location and extent of damage, (2) damage
can be identified under different hyper-parameters in TL-PINNs, and (3) lower relative
L2 errors between measured flexural guided wavefields and corresponding predictions
indicate better damage identification results. In future work, it would be valuable to
investigate the proposed method for structures with higher excitation frequencies.
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