
ABSTRACT 

Ultrasonic wavefields are widely employed in nondestructive testing and structural 
health monitoring to detect and evaluate structural damage. However, measuring wave- 
fields continuously throughout space poses challenges and can be costly. To address 
this, we propose a novel approach that combines the wave equation with computer vi- 
sion algorithms to visualize wavefields. Our algorithm incorporates the wave equation, 
which encapsulates our knowledge of wave propagation, to infer the wavefields in re- 
gions where direct measurement is not feasible. Specifically, we focus on reconstructing 
wavefields from partial measurements, where the wavefield data from large continuous 
regions are missing. The algorithm is tested on experimental data demonstrating its ef- 
fectiveness in reconstructing the wavefields at unmeasured regions. This also benefits 
in reducing the need for expensive equipment and enhancing the accuracy of structural 
health monitoring at a lower cost. The results highlight the potential of our approach to 
advance ultrasonic wavefield imaging capabilities and open new avenues for Nonde- 
structive testing and structural health monitoring. 

INTRODUCTION 

Structural Health Monitoring (SHM) employs nondestructive methods, notably ul- 
trasonic guided waves, to assess structural integrity [1–3]. Guided waves’ ability to 
cover vast areas with minimal intensity loss allows their use in various structures, such 
as pipelines [2, 4–9], bridges [10, 11], concrete structures [12], steel cables [13–15], and 
components of aircraft [16–21]. These waves, detected by high-resolution systems like 
scanning laser Doppler vibrometers [22], provide information about structure compo- 
sition and defects. Full wavefield acquisition may not always be feasible; thus, recon- 
struction algorithms are often employed initially. The pursuit of efficient wavefield data 
handling and interpretation techniques has become a significant research area. 

Some popular wavefield imaging reconstruction techniques are: 

• Back-Propagation [23]: This is a common method used in ultrasound imaging 
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and involves the inversion of data collected from multiple sensors to produce an
image.

• Seismic Migration [24]: This method involves the extrapolation of wavefield data
to a desired image plane and is commonly used in seismology and geophysics.

• Compressed Sensing [25]: This is a recent method that exploits the sparsity of
wavefield data in a transformed domain to reconstruct images with fewer measure-
ments than traditional methods.

• Time Reversal [26]: This is a process of reversing the time evolution of a wave-
field to focus the energy onto a target location and is used in medical imaging and
nondestructive testing.

Traditional wavefield analysis techniques are algorithmically limited and often strug-
gle with complex data, especially when significant data chunks are missing or when re-
flections from boundaries occur. The incorporation of physics-informed machine learn-
ing, specifically Physics-Informed Neural Networks (PINNs) [27], shows promise in
addressing these issues, enhancing our capacity to solve and identify partial differential
equations (PDEs) [28–31]. However, the complexity of these ”black-box” neural net-
work models can hinder interpretability and guaranteed convergence, besides requiring
extensive training data, computational resources, and training time.

We propose a balanced solution - a wave-informed decomposition technique to learn
approximate wavefield modes. This method reconstructs wavefields by enforcing their
compliance with the wave equation. We demonstrate that our algorithm can reconstruct
wavefields in large unmeasurable regions, using information from surrounding regions,
effectively performing data imputation or completion.

WAVE-PHYSICS INFORMED DECOMPOSITION

The Wave-physics Informed Decomposition (WID) provides a fresh approach to
wavefield data decomposition, breaking down input wavefields into constituent wave
modes, each with a unique propagation velocity obtained through the WID algorithm.
This algorithm ensures each mode follows a discrete wave equation, adhering to the
fundamental physical principles of wave propagation. The inherent resistance to discon-
tinuity in wave modes aids in recovering large missing data segments in wavefields.

WID represents an advancement in physics-informed machine learning, offering a
simpler yet powerful alternative to deep learning. By integrating fundamental physics
principles, WID creates a more intuitive, interpretable model capable of handling com-
plex wavefield data, aligning with the trend towards more interpretable, robust, and phys-
ically consistent AI models.

Tensorial Representation of Discrete Wavefields

Let’s imagine a wavefield, denoted as f(x, y, t), that is continuous and exists on a
finite structure within a finite time frame. For ease of understanding, assume that x has
the range defined by [0, Lx], y is defined in [0, Ly], and t in [0, T ].



Now, let’s sample this wavefield at Nx, Ny, and Nt points in the respective dimen-
sions of space (x and y) and time (t). The intervals between these sample points in space
and time are represented as ∆x = Lx/Nx, ∆y = Ly/Ny, and ∆t = T/Nt, signifying
the sampling periods for each dimension.

Subsequently, we form a tensor, U ∈ Nx×Ny×Nt. This tensor, in essence, captures
the sampled values of our original wavefield f(x, y, t) across the defined spatial and
temporal dimensions.

Uix,iy ,it = f (ix∆x, iy∆y, it∆t) . (1)

The tensor U stands as a discretized representation of the wavefield f(x, y, t). In the
decomposition algorithm we outline, we deal with vectorized forms of the tensors, which
are symbolized as vec(U).

The Wave Equation Discretized

The wave equation for a wave traveling in two spatial dimensions at a speed denoted
by c can be expressed as follows:

∂2u(x, y, t)

∂x2
+

∂2u(x, y, t)

∂y2
=

1

c2
∂2u(x, y, t)

∂t2
(2)

Presuming that U is the tensor representing the discretized form of the wavefield u(x, y, t),
the corresponding discrete form of the wave equation can be described as follows:

(It ⊗ Iy ⊗Lx + It ⊗Ly ⊗ Ix) vec(U)

=
1

c2
(Lt ⊗ Iy ⊗ Ix) vec(U) (3)

where It,Iy,Ix are identity matrices with sizes of Nt, Nx, and Ny, respectively. In ad-
dition, Lx, Ly, and Ly are Laplacian operators, discrete approximations of the second
derivation operation, for their respective dimensions. Finally, ⊗ represents the Kro-
necker production operation and vec represents the vectorization operation.

The Objective Function for Modal Extraction

Considering the discretized wave data, represented by the tensor Y ∈ RNx×Ny×Nt ,
our objective is to decompose this tensor Y into an aggregate of multiple tensors. Each
of these tensors should conform to a discrete variant of the wave equation. The principle
underlying this decomposition process can be aptly articulated as follows:

Y = U1 + U2 + · · ·+ Um (4)

in this context, each Ui (where i belongs to the set [m]) is required to fulfill the conditions
of a discretized form of the wave equation.

To take advantage of linear algebra principles and cast the problem in the context of
matrix factorization, it proves beneficial to vectorize (or flatten) the tensors and oper-
ate within the framework of vectors. To cater to this matrix factorization structure, we



rephrase equation 4 in a vectorized form as follows:

y =
m∑
i=1

ui (5)

where y = vec(Y) and ui = vec(Ui), for i ∈ [m]. Assume that each ui can be rep-
resented as Dixi, where xi acts as a scaling factor and Di is a column of matrix D.
We can then reformulate our representation as y = Dx. In this equation, x comprises
elements xi (for i in the set [m]). This formulation embodies the matrix factorization
aspect of our objective function.

In the initial framework, prior to vectorization, Ui was required to adhere to a discrete
form of the wave equation. This necessitates a similar stipulation on Di (considering
xi are scalars), albeit in a slightly altered format. Let’s denote the discrete version of
the wave equation, incorporating the wave velocity parameter ci, as Wci(Di) = 0. To
impose the structural characteristics derived from the wave equation, we aim to minimize
min
ci

∥Wci(Di)∥22, incorporating it as a component of the regularizer.

Moreover, we strive to limit the number of velocity modes to a minimum. We accom-
plish this by adding the squared Frobenius norms of both D and x. It is well known that
this strategy tends to induce low-rank solutions in the product Dx due to its link with the
variational form of the nuclear norm, as suggested in the works of [32], [33], [34], [35].

As a result, we derive the regularizer as

Θ(D,x) =
M∑
i=1

θ̄(Di, xi) (6)

where γ > 0 is a tunable parameter and θ̄(Di, xi) = γmin
ci

∥Wci (Di)∥ + ∥Di∥22 + x2
i .

The ultimate problem we aim to solve, framed in the form of an optimization objective,
is as follows:

min
M

min
D,x,c

1

2
∥y −Dx∥22

+
λ

2

(
M∑
i=1

γmin
ci>0

∥Wci (Di) ∥22 + ∥Di∥22 + x2
i

)
. (7)

The linear operator Wci(.) is contingent on the value of ci. Consequently, it’s possible to
define a matrix in such a way that, Wci(v) = Aciv. For,

Ac = Lx ⊗ Iy ⊗ It + Ix ⊗Ly ⊗ It −
1

c2
Ix ⊗ Iy ⊗Lt (8)

and λ > 0 is the regularization weighting the term Θ(D,x).

THE OPTIMIZATION ALGORITHM

Using a flowchart as a guide (refer to Fig. 1), we outline the algorithm employed
to solve this optimization problem, with theoretical details available in [34–36]. The



Figure 1. Wave-physics informed decomposition flowchart

algorithm begins with an empty matrix D and an empty vector x, incrementing the
number of columns in D by 1 and correspondingly adjusting the size of vector x in each
iteration (refer to the ”Obtain New Modes” block in Fig 1, highlighted in blue, which
generates the column to be appended).

The algorithm ceases operation in proximity to global optimality due to the stopping
condition Ω◦(z/λ) < 1 + ϵ (see equation 9), which guarantees that the acquired D and
x are within O(ϵ) of the optimal solution ( [35], Prop. 4), given a user-defined ϵ > 0. We
additionally also specify a practical stopping condition where the algorithm stops after a
specified N size for the number of columns in D.

Ω◦
θ

(z
λ

)
= max

d,x,ci
d⊤
(z
λ

)
x

s.t. ∥d∥22 + γ ∥Acd∥22 ≤ 1, |x| ≤ 1. (9)

Note that the above optimization problem is often called the polar problem and it is used
in obtaining new modes and also in the stopping condition. λ is the regularization con-
stant as defined in the previous section and z is usually the error between the aggregate
of the decompositions so far and the actual data. Ac is as defined in equation 8.

RESULTS AND DISCUSSION

The algorithm is run on ultrasonic wavefield data obtained by exciting an aluminum
plate with a chirp signal ranging from 0 to 300kHz. The measured data then has a peak
frequency at 130.6kHz. Fig. 2 shows the snapshots of the data considered at different
time points. We observe the wavefield originating from a single location. In addition,
there is a secondary source / point scatterer (i.e., damage). We also observe that the wave
reflects from the boundaries at the edges of the spatial area.

We test our algorithm on this dataset by blinding a centered continuous region (Fig.
3(a)). We demonstrate the effectiveness of our method in reconstructing the wavefields
at the unmeasured regions (Fig. 3 (a) and (b)) and show its capability to reconstruct the



Figure 2. Snapshots of data at different time frames

Figure 3. (a) The partial wavefield at a time stamp (the data in the red box is assumed to be unmeasurable).
(b) The reconstructed wavefield (at a different timestamp) clearly indicating the location of the source. (c)
The actual wavefield at almost the same timestamp as in (b) confirming the location of the source.

exact location of the source, even when the source is in the unmeasurable region. Fig.
3 (c) shows the true wavefield and location of the source. This approach enhances the
capabilities of ultrasonic wavefield imaging and opens new avenues for Nondestructive
testing and structural health monitoring.

CONCLUSIONS

This paper introduces the wave-physics informed decomposition algorithm, a novel
technique for reconstructing large missing data sections in structural health monitoring.
Our findings validate its successful application in regions where direct measurements
are unattainable. Future studies will evaluate its performance in detecting primary and
secondary sources, thereby consolidating its application in nondestructive testing and
structural health monitoring. This algorithm marks a stride in wavefield reconstruction
and promises to enhance ultrasonic wavefield imaging and structural health monitoring.
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