
ABSTRACT 

During online implementation of vibration-based structural health monitoring (SHM) 
strategies, forward prediction of the system state may allow for improved detection 
speed. With adequately fast forward prediction, feedback systems can also be improved 
to provide in-time control plants. When using solely physics-driven models, small dis- 
crepancies between the physical system and digital model can result in significant devi- 
ation between the estimated and true output. On the opposite end, a solely data-driven 
model can only reasonably be applied in an identical, or sufficiently similar, scenario to 
that for which the data was collected. Using machine learning to combine data with 
known physics is a well-proved approach to overcoming this issue. One such method 
for this approach is the use of physics-informed neural networks (PINNs), which can be 
implemented as either a forward modeller, or a constrained learner, for equation solu- 
tion discovery, or equation discovery. The former of these aims to provide the desired 
output from the governing physical equations, whereas the latter estimates the parame- 
ters in these equations. A significant advantage of PINNs is, given a suitable network 
architecture, the high speed and low computational-cost of their prediction step, which 
positions them as a useful approach for real-time estimation, given adequate training. A 
common assumption for PINNs is that the embedded physics is exhaustive with re- 
spect to the ‘true’ model. In this paper, a novel PINN-based architecture is presented to 
rapidly forward-predict the state of a dynamic system given an initial state. For the state 
estimation, the PINN acts as an equation solution discovery approach, and the novelty of 
the architecture here is to provide a more generalised predictor which can be applied to 
a wider range of instances. The PINN is intended to deliver its prediction within a pre- 
scribed time frame, which equals the sampling time of the acquisition/control system, 
and is here assessed against this goal. 
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INTRODUCTION

Structural dynamics forms the main source of traits employed for detecting dam-
age in a structural health monitoring regime [1], which often requires an accurate and
robust model of the system for physics-only based models. Such features are com-
monly extracted from frequency-domain methods, such as modal characteristics, trans-
missibilities, which provide robust parameters which can be used in novelty-detection
regimes [2]. For structures that vibrate at lower frequencies, these methods will require
large sampling lengths, which fosters alternate adoption of time-domain models for im-
proving detection speeds [3]. With adequately fast forward prediction, feedback systems
may also be improved to provide in-time control plants [4].

Real-, or in-, time state estimation has had many proposed approaches, particularly
in vehicle dynamics [5]. Kalman filters have been used to estimate the state of dynamic
systems [6, 7], which, with an accurate model of the system, can produce reliable and
reasonably fast estimation. However, they require the use of matrix operations, which
are computationally of the order O(n3), and so can quickly require long computational
times. Parametric-reduced-order-modelling has been used to approach the problem of
rapid estimation [8], where data-driven methods ar used to allow reconstruction in the
time domain using a reduced set of parameters which retains a prescribed level of infor-
mation. Solely data-based approaches have also shown promise for rapid identification
of nonlinear dynamic systems [9], but such methods can suffer from a lack of generalis-
ability.

Purely physics-drive modelling can be a sure way to obtain accurate models, assum-
ing an adequate definition, however, significant errors between the estimated and true
output can result from small discrepancies between this definition and the true physical
system. This can motivate the use of solely data-driven modelling, but such methods
suffer from a lack of generalisation; they may only reasonably be applied in an identical,
or sufficiently similar, scenario to that for which the data was collected. By combining
known physics with machine learning, an improved modelling strategy can be obtained.
One such method is the physics-informed neural network (PINN) [10], which has gained
attention in recent years thanks to its flexibility [11]; it can be implemented as a con-
strained learner for either equation solution discovery [12] or equation discovery [13],
or as a forward modeller [14].

The training time of PINNs as forward modellers, in relation to traditional finite-
element methods, is often much larger, leading to some statements implying their im-
practicality [15]. There have also been claims that PINNs are also slower in computation
mode [16], however, these studies lack analysis on the minimum network architecture
required, which is noted by Rezaei, et al [15]. As a result of the relatively low computa-
tional cost of a single-pass (with suitable network design), PINNs may provide a conve-
nient solution for problems where rapid prediction is required [17], as the computational
effort is done a priori during training. Furthermore, the inherent stochastic and iterative
procedures involved with machine learning approaches, place them in a useful standing
for uncertainty quantification; which is a valuable resource in SHM techniques [1].

In this work, a PINN is designed to predict, forward in time, the state of a dynamic
system, given an initial state. A frequently-encountered challenge with PINNs for dy-
namic systems is the difficulty in estimating over a large horizon, both in time or space.
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Figure 1. Example architecture of an arbitrary fully-connected, feed-forward neural network.

Therefore, many applications discretise the domain, applying separate NNs to each of
these discretised portions [18]. The primary issue with such techniques, is their inflex-
ibility; they are restricted to the exact instance in which they are trained. Many PINNs
for dynamic systems provide solutions for a given initial condition [19], however, with
even minor deviations from this scenario, the predictor is no longer suitable. The aim
here is to determine a model that can predict within a specified time window, so it is
not necessary to predict over such a large horizon, however, the discretisation is done
similarly here.

PHYSICS-INFORMED NEURAL NETWORKS

Perhaps one of the most well-known machine learning methods, is the artificial neu-
ral network (ANN). For a regression problem, the aim of an ANN is to determine an esti-
mate of the mapping from the input x, to the output y. An example of a fully-connected
feed-forward NN architecture is shown in Figure 1, where each node is connected to
every node in the next layer and the values are passed through an activation function σ.
For N hidden layers, the output of the neural network can be defined as,

Ny(x;W,B) := σ(wlxl−1 + bl), for l = 2, ..., N (1)

where W = {w1, ...,wN} and B = {b1, ...,bN} are the weights and biases of the net-
work, respectively. These then form the hyperparameters of the network, Θ = {W,B}.

The aim of the training stage is to then determine the network parameters Θ =
{W,B}, which is accomplished by minimising an objective function designed with an
intention to be towards zero. With target output data y∗ from the domain of observations
x ∈ Ω0, this objective function is often defined as the mean squared error between the
predicted values and the observed values,

Lobs(x
∗;Θ) = ⟨y∗ −Ny(x

∗;Θ)⟩Ω0 , ⟨•⟩Ωκ =
1

Nκ

∑
x∈Ωκ

||•||2 (2)

If the physics of the system is known (or estimated) in the form of ordinary or partial
differential equations, then this can be embedded into the objective function over which



the NN parameters are optimised [10]. Given a general form of the PDE,

F(y,x; θ) = 0 (3)

for some nonlinear operator F acting on y(x), where θ are parameters of the equation.
When predicting the output of a neural network, we can also create an estimate of the

nonlinear operator, F(Ny,x; θ). This can then be directly used as an additional objective
function, forming a ‘soft’ boundary condition [20], to be minimised, as when this term
vanishes, the PDE is satisfied. Given the domain of collocation points, xp ∈ Ωp, this
term is defined as,

Lpde(xp;Θ, θ) = ⟨F(Nyp ,xp; θ)⟩Ωp , Nyp = Ny(xp;Θ) (4)

Then, we can combine the observation objective function with the pde objective function,
and minimise this,

L = Lobs + ΛLpde (5)

where Λ is a normalisation parameter required to posit the objective function terms in
the same magnitude to aid optimisation. In this work, often a combination of the input
normalisation parameters are used to set the value of Λ.

ONE-STEP-AHEAD PINN

The aim of the one-step-ahead predictor in this work, Nw, is to estimate the displace-
ment of a single-degree-of-freedom (SDOF) system within a given time horizon, from
its initial state and the applied force,

w(t) = Nw(w0, ẇ0, f0, t;Θ) (6)

where w0 and ẇ0 are the initial displacement and velocities, respectively, f0 is the force
and t is the time, where w(t = 0) = w0. Antonelo, et al. [17], proposed an architecture
for rapid control estimation using a PINN-based approach. A similar architecture is
proposed here, however, is adapted to include the velocity term so that it may better
model nonlinear systems. Given a set of data y∗ = {w, ẇ}, the time-horizon T , equal
to the sampling period of the data, is set as the target domain for the predictor. This
data can then be set as the initial state inputs, {w0, ẇ0}, and the observation loss is then
defined as,

Lobs = ⟨Nw − w∗⟩Ω∈t=T (7)

where w∗ is taken from the sample one time point ahead, i.e. w∗,(k) = w
(k+1)
0 . Then, the

collocation domain is set as a uniform sample over the time-horizon, Ωc ∈ [0, T ], and
the physics loss is defined as,

Lpde = ⟨F(Nw)⟩Ωc (8)

Additionally, an initial-condition loss was defined,

Lic = ⟨w0 −Nw⟩Ω∈t=0 + ⟨ẇ0 − ∂tNw⟩Ω∈t=0 (9)



Figure 2. Data representation from a time-domain signal, indicating the initial state for data point k, and
the data available at the end of the time horizon.

The role of each of these objective functions is to apply individual ‘soft’ conditions on
the system. The first term guides the learner using observations at the end of a speci-
fied time horizon. The second term, constrains the learner using known physics, so the
learner can produce solutions within the collocation domain where no observations took
place. And the final term provides a constraint on the collocation domain at time zero
as we are predicting from this state. In this work, a SDOF duffing oscillator, with force
f(t) applied, is modelled,

F = mẅ + cẇ + kw + k3w
3 − f(t) = 0 (10)

As an overall description, this method acts as an equation solution discovery in the time
horizon between samples. Because the PINN accepts only the initial state and force
input, the method is readily available to make state predictions in a large number of
instances (i.e. it is not limited to a specific initial condition), given adequate training.

Figure 2 shows how the problem is formulated in the time domain. The data point
at location k is treated as the current system state w

(k)
0 , and the aim is to predict the

displacement at the end of the time-horizon, w(k)
T . As such, the subsequent data point is

taken as the observed displacement at the end of this window, i.e. w(k)
T = w

(k+1)
0 .

RESULTS AND DISCUSSION

The method detailed above was applied to a variety of scenarios for an SDOF sys-
tem, where the data was simulated using Runga-Kutta numerical solutions [21]. Firstly,
the system was set up as either a linear or Duffing oscillator, the former of which was
done by setting k3 = 0. Then, for each of these system definitions, either free or forced
vibration was modelled. Four different forcing types were modelled; sinusoidal, random-
phase-multi-sine (RPMS), Gaussian white noise (GWN), and forward-sine-sweep. Fur-
ther details on the parameters of the systems being modelled are shown in Table I. In



TABLE I. MODEL PARAMETERS FOR DYNAMIC SYSTEMS AND DATA GENERATION.

T N Ns m k c k3
Free 0.3519 s 1024 127 10 kg 15 N/m 0.75 Ns/m 20 Nm−3

Forced 0.4106 s 2048 511 10 kg 15 N/m 1.0 Ns/m 20 Nm−3

all results in this work, a fully-connected, feed-forward neural-network was used with
2 hidden layers, each of 16 nodes. This network architecture was chosen based on the
modelled system being relatively simple and the objective of enabling rapid estimation.

For all system/excitation types, an N sample dataset was generated which includes
displacement, velocity and force with an equivalent sampling period T . This is then used
to generate an N − 1 sample dataset of,

D = w∗(w0, ẇ0, f0, T ) (11)

Then, the PINN architecture is trained on Ns samples from this dataset, selected using
a quasi-random Sobol sequence [22]. After training, the remaining Nt samples were
passed through the PINN to estimate the displacement at the end of the time horizon. As
an assessment metric, the root-mean-square-error was calculated,

RMSE =

√√√√ 1

Nt

Nt∑
i=1

|w∗(w0, ẇ0, f0, T )−Nw(w0, ẇ0, f0, T )|2 (12)

Table II shows the assessment metrics for all the system/excitation types modelled,
including the RMSE and the maximum computational time (MCT) for all individual
predictions. The computation was performed on a MacBook Air with Apple M2 CPU.

For all predictions, the maximum computational time is much lower than the sam-
pling periods. In particular, the time required for prediction of linear and nonlinear sys-
tems remains similar, which would not be the case for conventional numerical solutions.
It is worth noting that the computational time required is dependent on the system, and
the computational performance is dependent on hardware, and so these factors would be
necessary to design for in application.

The RMSE metric provides information on the error of the predictions at the same
magnitude as the value begin estimated. Therefore, the values in Table II indicate a good
level of accuracy of the predictor. The largest value for the RMSE is the linear system
undergoing RPMS excitation, and information on this prediction over the time domain

TABLE II. ASSESSMENT METRICS FROM PREDICTION USING TRAINED NEURAL NET-
WORKS.

Oscillator Metric
Forced

Free Sinusoid RPMS GWN Sine sweep

Linear
RMSE 1.122E-4 3.268E-5 1.406E-3 1.348E-4 7.398E-4
MCT (ns) 39.0 40.3 44.9 39.6 39.3

Duffing
RMSE 7.989E-5 3.280E-5 8.231E-4 1.656E-4 1.267E-4
MCT (ns) 39.9 39.7 40.9 40.9 39.7



Figure 3. Results for prediction of a linear oscillator with RPMS excitation; (a) recreated
signal by prediction at each initial state point extracted from the signal, (b) absolute error
between estimated displacement and exact solution, and (c) computation time for each
prediction step.

is shown in Figure 3. From this figure it can be seen that the RMSE values are, at most,
approximately two order of magnitude smaller than the value being estimated.

Figure 3 and Figure 4 show the prediction of the trained PINN at every time step
available; the full signal is recreated by taking the current state and predicting one time
step ahead. As well as the recreated signal, the absolute error between the exact solution
and the prediction, and the CPU time at each data point, are shown. Figure 3 shows
the results for the prediction of the Duffing oscillator system undergoing random-phase-
multi-sine excitation, and Figure 3 shows the same system undergoing Gaussian white
noise excitation. Even though the system modelled is a nonlinear system, which requires
iterative numerical solutions, the predictions are accurate throughout the entire domain.

The accuracy of the reconstructed signal also displays the methods capability as a
forward modeller, which could be performed by feeding forward the results of the es-
timated solution of the previous system state to the next. As well as the accuracy in
prediction, Figures 3 and 4 show the consistency in the computational speeds at all state
prediction points, with a deviation only between ∼36 to 44 ns.



Figure 4. Results for prediction of a Duffing oscillator with GWN excitation; (a) recreated signal by
prediction at each initial state point extracted from the signal, (b) absolute error between estimated dis-
placement and exact solution, and (c) computation time for each prediction step.

CONCLUDING REMARKS

In this paper, a physics-informed-neural-network (PINN)-based approach for rapid
forward prediction of a dynamic system was shown. A variety of SDOF systems un-
dergoing various excitations were tested; the accuracy was found to be excellent when
tested against data not seen by the learner, and the computational times were also very
low. By predicting over the full domain of the simulated data, time-domain signals were
also reconstructed which matched well with the exact solutions. The work shown in this
paper indicates the promise of using PINNs for state-estimation in problems where speed
of prediction is important. Further work is intended to be done by the authors to apply
such a method to more complex systems, as well as to utilise the inherent characteristics
of the machine learning approach to produce stochastic information.
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