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ABSTRACT

Combining physics with data-driven learning seeks to harness the benefits of the expres-
sivity of machine learners whilst having known physical laws that the model must adhere
to. Building these types of models have the advantage of being able to represent phe-
nomena more complex than can be described with simplified analytical equations, whilst
simultaneously allowing for greater prediction confidence and interpretability, as well as
providing a mechanistic basis that predictions can revert to when data becomes scarce.
With operators more frequently carrying out monitoring campaigns, and decades of en-
gineering knowledge to call upon, it is a natural step for health monitoring practitioners
to adopt physics-informed learning strategies for monitoring structures.

In many engineering scenarios, it is often the case that one will not have complete
physical knowledge of a structure or system of interest, but partial knowledge, for which
it is desirable to encode in a machine learning model. In this paper, we will explore how
this type of knowledge can be embedded into Gaussian process models for processes that
naturally exist as products of constituent functions, such as for processes that have both
spatial and temporal dependencies. Focus will be placed on how the properties of the
covariance function that has embedded physical structure dictates the predictive regime
that the model may operate in within the partial knowledge setting. Application of the
developed models includes learning the decoupled response of a beam under random
loading into the constituent mode shapes and temporal response.

INTRODUCTION

As sensing data becomes increasingly available, it has become commonplace in
many research fields to call upon data-driven learners to model complex physical pro-
cesses. One example of such a field is structural health monitoring (SHM) [1], where
machine learning is now regularly employed to make inferences over the health state of
a structure, with objectives ranging from detecting the presence of damage [2, 3], ulti-
mately up to predicting the remaining useful life of a structure. Whilst data-driven learn-
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ers offer a high degree of flexibility, their predictive performance is heavily conditioned
on the availability of a training set that is sufficiently representative of the prediction
space of interest. What this means from an SHM perspective is that there should ex-
ist data from each possible environmental and operational condition a structure may be
subject to, requiring large scale investment from asset owners in terms of time spent ac-
quiring data, and the associated financial cost. For problems that rely on spatial mapping
such as learning ultrasonic feature mappings [4, 5] this requirement extends to acquiring
a suitably dense training set, which, for large scale industrial structures, can be a limiting
factor.

In an attempt to lessen the reliance of machine learning tools on training data, much
recent work has been dedicated to incorporating known physical knowledge. In the gen-
eral machine learning community, this is often referred to as physics-informed machine
learning, or learning physically-consistent inductive biases. Detailed reviews on this area
of research are provided in [6—-8]. In SHM, terminology also extends to grey-box mod-
els, derived from one considering a physics-informed (grey-box) model as the combina-
tion of a purely physics-based (white-box) model and a purely data-driven (black-box)
model [9]. The advantage here is that one can retain the flexibility provided by data-
driven learners, whilst simultaneously incorporating known mechanistic laws that gov-
ern the dynamic process one is interested in capturing. Some recent examples of work in
this area includes wave loading prediction [10], ultrasonic feature mapping [5, 11], cap-
turing temperature trends during the monitoring of bridges [12], and domain adaptation
for energy forecasting [13].

A natural way to handle the grey-box paradigm is through Bayesian statistics, where
one begins with some prior belief. Having observed some data that can be represented
as having been drawn from a distribution through the use of a likelihood function, the
prior can be combined with the likelihood and a normalisation term to infer a posterior.
From a grey-box perspective, the prior provides the opportunity to encode physical in-
sight/domain awareness into the learning task. The physically encoded prior can then
be combined with observational data through the likelihood to return a posterior that
is a blend of data and physics-based learning, with the exact ratio of physics to data
dependent on the depth of knowledge in the prior and the information provided in the
data. One approach for forming Bayesian anaylsis as a learning task is to interpret the
prior as a Gaussian process (GP) [14], providing the means for constructing a regression
problem, whilst allowing for the inclusion of physics through embedding structure in the
GP.

When constructing a physics-informed model, it is imperative that the knowledge
embedded is representative, at least in some way, of the actual underlying phenomena.
If not abided by, the included knowledge will generally not improve model performance,
and likely even hinder it. As such, it is often the case that only partial knowledge is avail-
able, in which only some insight regarding the driving physical mechanism is embedded
in the model. For instance, one may possess some linear approximation of the physics,
but lack an understanding of more complex behaviour that fully encapsulates the entirety
of the underlying phenomena. Where this is the case, some authors have adopted a resid-
ual modelling approach, where a physical model of the more simple physics is summed
with a flexible, data-driven component that captures any remanent behaviour not repre-
sented by the approximation [10]. Whilst effective, it may sometimes be more appropri-
ate to construct a model that considers other linear operations over multiple functions.



In this paper, focus will be on the product operation. In SHM, there are many scenar-
ios where products of multiple constituent functions are of interest. One example is the
combination of spatial and temporal phenomena, which frequently arise when modelling
dynamic systems, particularly under environmental and operational variations. Systems
with time-dependent parameters may also be modelled as being the product of two un-
derlying processes [15].

Whilst physics-informed machine learning is gaining a fair amount of traction, there
has been much less attention on how physics may be fused into processes that are the
product of multiple lower level processes in a partial knowledge setting, where one may
have good insight into the governing structure of only one of the composite functions.
Take the vibration response of a linear structure as an example, which can be decom-
posed into a product of the mode shape (spatial component) and the temporal response.
In this setting, structure relating to the temporal response may be known and subse-
quently embedded through use of the covariance function of a linear dynamic system
under random loading [16], with the mode shapes treated as unknown and need to be
learnt. Even in cases where the geometry of the structure has a corresponding analytical
form, such as a cantilever beam, use of such expression will enforce many assumptions
that are often simplifications of a real-world system, including uniform mass, perfect
boundary conditions, and homogeneous material properties, as discussed in [17].

In this paper, we consider how one may attempt to exploit partial physical/domain
knowledge for processes that are formed as a product operation of multiple constituent
functions. The analysis will be entirely through the lens of kernel machines [18] - specif-
ically Gaussian processes [14] - and thus how kernel design can be exploited in this set-
ting. It will be considered how the properties of the physical kernel, such as whether it is
stationary or non-stationary, impacts the predictive capabilities of the overall model. In
particular, whether interpolation or extrapolation should be performed, dependent upon
how the physics held translates into a kernel representation.

The paper proceeds as follows; Section 2 will introduce the Gaussian process ma-
chinery necessary, discuss how kernel selection can be used to can embed structured
physical insight, as well as the influence that particular kernel properties have on pre-
diction capabilities in both interpolation and extrapolation. Section 3 will outline the
examples used in the paper and the specific construction of the models considered, with
Section 4 presenting the corresponding results and discussion. The paper concludes in
Section 5.

PARTIAL PHYSICS KNOWLEDGE IN GAUSSIAN PROCESSES MODELS

A convenient model form to embed partial structure when considering products of
functions are Gaussian processes; a class of Bayesian non-parametric regression tech-
niques. The construction of this model type naturally lends itself to modelling products
of functions by considering products over kernels, and will be discussed in more detail
later in the section. First, let us briefly introduce the basics before progressing onto the
mechanism for constructing products-of-function models.



A brief introduction to Gaussian process regression

When modelling a variable as a Gaussian process, the assumption is made that the
variable is drawn from a Normal distribution, with any collection of draws made from
the Gaussian process to also be jointly Normal. This property is extremely useful in a
regression setting, where a GP can be used to learn a nonlinear mapping f : X — vy,
where X are inputs and y the corresponding targets'. To define a Gaussian process prior
over f relies on specifying a mean and covariance function. More formally,

f~GPm(-), k() (D

where f is a GP prior with mean function m(-) and covariance function &(-, -'). To make
predictions at unseen input locations X,, the prior may be conditioned on a set of training
inputs and outputs, D, subsequently forming the joint distribution between the training
and test data. This results in the following predictive equations,

p(ys) = N(E[ys], Vys]) (2)

where,
Ely.) = K(X,, X)[K(X, X) + a2 'y (3)
Viy,] = K(X,, X,) — K(X,, X)[K(X,X) + 21" K (X, X,) (3b)

Gaussian processes in product spaces

As seen in equation (1), a GP is defined by a mean and kernel function. If we reduce
to the zero prior mean case, then all that remains is the specification of the kernel, which
essentially weights how a target prediction should relate to outputs already observed in
the training data set. Kernels cannot, however, be any arbitrary function of a pair of
inputs, and are required to satisfy two conditions; namely positive-semi definiteness and
symmetry with respect to the inputs [14]. Given that linear operations acting on a kernel
also produces valid kernels, then it is possible to construct a kernel that is the product of
two individual kernels, thus naturally handling functions of such nature.

Kernels may also exhibit other properties, such as whether they are stationary or non-
stationary, isotropic or anisotropic and order of differentiability to name a few. In the
context of partial knowledge, stationarity of the kernel is perhaps the most fundamental
property, ultimately governing whether the kernel allows for extrapolation or not. If a
kernel is said to be stationary, then the function is only dependent upon the distance
between a set of inputs x — x/, rather than the absolute value, x, and so is invariant to
shifts in the input space. As an example, take the squared exponential kernel function,
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which due to containing x — X/, serves as a stationary kernel in terms of x. However, the

linear kernel,
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Modelling a function that is a product of two separable
processes. A common composition of this type is where
one function is a spatial process and the other a temporal: P(z)T'(t)

J
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Figure 1: Workflow for embedding knowledge in products of functions as modelled by kernel
functions.

is a function of x - X, and so is sensitive to translations in the input space, and thus,
non-stationary. For stationary kernels, in an extrapolation regime, the distance between
training and testing inputs grows, thus forcing x — x’ to become large. Stationary kernels
should therefore only be employed in settings where there is ample data coverage for the
process one is interested in learning. If data coverage is limited, but there exists physical
insight into the process being modelled, then this structure can be built into the kernel.
Where a non-stationary kernel can be used to capture this structure, then it is possible
to extrapolate, with the predictions not forced to a zero mean prior away from training
data. If not possible to represent as a non-stationary kernel, without a mean function,
predictions should only be attempted in regions of the input space that are within the
range of a single lengthscale(or equivalent), which will largely be interpolation. Often,
inclusion of physical structure will offer an improved interpolative performance, particu-
larly where the training data is sparsely sampled?, such as an under-sampled time signal.
In this scenario, with a model structure that is representative of the dynamic behaviour
of the oscillating system, then it is possible to recover the signal with less frequently
sampled training data, and allows one to up-sample the resulting time signal. Figure
1 summarises the above discussion, and illustrates the workflow for embedding partial
knowledge (the branch marked b) into processes described by the product of two con-
stituent functions. Note that there are two other levels of knowledge that may be held,
as indicated on the diagram with a) and c) headings. These cases will not be considered

! Although notation implies a 1-dimensional regression, it is possible to extend to the M-dimensional
case.

Note the difference between coverage and sparsity - coverage refers to how much of the total input
space is covered by the possible regions of the total input space, whilst sparsity relates to how dense the
training samples are from a particular region of the input space.



in this paper.

CASE STUDIES

To investigate inclusion of partial knowledge, two case studies will be considered in
this paper; the first, a simulated example consisting of two lower level functions, where
for one function, structure is available but with limited data coverage, whilst for the other,
no domain knowledge, but good data coverage. The second example is learning the
decoupled response of a vibrating beam subject to external loading such that unknown
mode shape functions can be recovered.

For the first example, we consider the mapping of f;, defined as the following,

Je = i/, (6)

where,
fi = 5cos’(xy), (7
fa=2x3. (8)

The mapping of the combined function is plotted in Figure 2. We will imagine the
scenario where one has knowledge of the process f; in that it is a polynomial process
of order two. To model f>, a GP with a polynomial kernel of order 2 can therefore be
selected, which has the form,

Kpoty = (Cpoty + O-J2c,polyXX/>2' )

f1 will be unknown and so will be modelled by a black box kernel, which in this example
is a squared exponential (equation (4)). The resulting final model for f; is thus assumed
to be,

fe ~ GP(0, ks - kpory) + 0 (10)

with o, and | denoting the respective signal variance and lengthscale hyperparameters,
with o, the variance of the noise model.

For the second case study, the interest is in predicting the response of a randomly
loaded beam. From linear modal analysis, it is possible to construct the response of a
linear system ¢ as the sum of the contribution of all individual modes 9,, which for a
discrete number of modes R can be written as,

R
S(a,t) = 6n(x,t). (11)
r=1
Given that contribution of each mode can be decomposed the mode shape function @,
and the temporal response, 7;., we arrive at an alternative formulation of equation (11),

R R

S, t) = 6, t) = O (x)T,(2). (12)
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Figure 2: Mapping of equation (6). Left side axis is x1, right side axis is x».

It can be seen that equation (12) is an example of a spatial temporal function where the
spatial and temporal components are independent of one another. In this example, we
consider the case where we have knowledge of the covariance of the temporal response,
but not of the mode shapes, which is often the case for operational structures as discussed
previously. To model the temporal response, the SDOF covariance as derived in [16] will
be used, which is expressed as,

kspor = % expCwnl7l (cos(wdT) + % sin(wd|7'|)> (13)
m is the equivalent SDOF mass, w,, and w, the natural and damped natural frequency,
¢ the damping ratio, o, the variance of the forcing and 7 equal to ||x — x’||. For
the spatial component, as the modeshapes are assumed unknown but with representative
data available, a black box kernel will be used, which is chosen to be the SE kernel. This
results in an assumed model for the rth mode of,

8:(x,t) ~ GP(0, ksp, - kspor,) + 02, (14)

To consider the combination of R modes, a sum can be formed over the product kernel
such

R
8(x,1) ~ GP(0,> ks, - kspors)- (15)

r=1
To generate data for this system, the response of a fixed-free beam under random forcing
is simulated at a sampling rate of 8192Hz for one second. The forcing profile can be seen
in Figure 3, with the corresponding response shown in Figure 4. Although in this case,
there are closed form analytical expressions for the mode shape functions, the purpose
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Figure 3: Input forcing to the system.
of the case study is to demonstrate how partial knowledge may be embedded into kernel

structures, which subsequently can be extended for more challenging systems such as
those with imperfect boundary conditions and other challenges of non-idealised systems.
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Figure 4: Decomposed temporal response of first five modeshapes (left) and the associated mode-
shapes (right) for the simulated beam.
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Figure 5: Training/testing regime for case study 1 and corresponding predictions at slice of x;.

RESULTS AND DISCUSSIONS

For the first case study, a training set of half of the total input space is considered,
with a testing set of the full simulated input space, as shown in Figure 5a. The training
set is representative of having limited data coverage for f5, for which physical structure
is encoded through the kernel, whilst having full data for process f;, where no domain
insight is available. Plotting the predictions along a slice of the inputs at x; = 0.6 in
Figure 5b, it can be seen that the GP model is able to accurately predict the mapping,
including in regions of extrapolation. Again, this is a result of it being possible that the
physical insight possessed is translatable to a non-stationary kernel.

Having demonstrated through a simple problem how partial knowledge can be ex-
ploited in kernels in a product of functions setting, let us now move on to a task with
direct engineering relevance in learning a vibration response decomposition. For the pur-
poses of demonstration, only the first mode is considered. However, similar to the free
vibration setting as demonstrated in [17], it is possible to extend the kernel to be a sum
over multiple modes. Should identifiability issues arise, one strategy is to make informed
selections of the temporal kernel hyperparameters, such as fixing the natural frequency
or damping ratio of a given mode. In the work in this paper, w,, in the temporal kernel
is set at the corresponding natural frequency, which would be possible to obtain from
a variety of identification techniques such as stochastic subspace identification [19]. If
one did not have confidence in fixing at a determinant value, a Bayesian treatment of the
hyperparameters may be pursued, placing a prior that reflects the confidence a modeller
has, over the parameter.

Training on the response of the first mode at 10 evenly spaced location at every
128th time point (every 1/64s), model performance is evaluated at every 32nd time point
(1/256s) at the same spatial locations. The decomposed predictions on the test set are
shown in Figure 6. It can be seen that the model has been able to correctly recover each
component of the decomposition, notably at a much higher sample rate than the model
was trained on.
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Figure 6: Decomposition of first mode contribution for cantilever beam response. Uncertainty
on predictions indicated by dashed lines, quantified as 3 standard deviations from the output of
the GP.

CONCLUDING REMARKS

In this paper, it has been investigated how product combinations of kernels can be
utilised for embedding partial knowledge into systems that can be modelled as products
of constituent functions. Consideration has been given to how the properties of the ker-
nel with physical structure impact the predictive regimes that the model may be expected
to perform well in; more specifically, if the kernel is stationary or non-stationary. It was
demonstrated that when available physical insight can be represented as a non-stationary
kernel, the model may be used in extrapolation, providing data is available for other con-
stituent functions for which no domain insight is available. In the case where knowledge
is captured with a stationary kernel, an improved interpolative performance can be ex-
pected, for which benefits were shown in both up-sampling a time signal, as well as for
learning the decoupled response of a vibrating beam into the corresponding mode shape
and and temporal response.
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