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ABSTRACT 

Data for training Structural Health Monitoring (SHM) systems are often expensive or 
infeasible to obtain. Population-based SHM, which considers data across a population 
of structures, presents a potential solution to this issue. However, as differences between 
structures can lead to differing training and testing distributions, conventional machine 
learning methods may not generalise between structures. To address this issue, transfer 
learning (TL) can be used to leverage information across related domains. An important 
consideration when applying TL is how to asses similarity to identify and extract shared 
information. In unsupervised TL, a major challenge is that previous data-based metrics 
are limited to quantifying marginal distribution similarity in the unsupervised setting. 
This paper proposes utilising the Modal Assurance Criterion (MAC) between modes 
of healthy structures as a measure of data similarity to identify features that minimise 
conditional distribution shift. The MAC is incorporated into a feature selection criterion 
and a TL methodology is proposed. Moreover, the proposed methodology is shown to 
facilitate label sharing within a heterogeneous population of helicopter blades. 

 
INTRODUCTION 

In data-based SHM, diagnostics are often limited by the availability of data – par- 
ticularly labelled data – as collecting labelled data for engineering applications is costly 
and often impractical. Population-based SHM (PBSHM) is a field that seeks to address 
this issue by considering data from a population of structures, thereby increasing the po- 
tential information available [1–3]. However, considering data from different structures 
invalidates the assumption that the training and testing data were drawn from the same 
distribution – an assumption made by conventional machine learning algorithms. 
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This issue motivates the application of transfer learning (TL), a field of machine
learning that aims to address data scarcity issues by using labelled data from one or more
source domains [4]. The assumption is that the source domain is related to the target
domain, so knowledge transfer can improve performance in the target domain. Thus,
TL algorithms aim to extract shared information by using limited target labels [5] and/or
unlabelled target data [4, 6, 7]. Transfer learning has been successfully applied to the
field of SHM for a number of applications [8–12].

A significant limitation of transfer learning approaches to SHM is the potential of
performance degradation – a phenomenon called negative transfer [13]. Therefore,
to avoid negative transfer, reliable metrics are needed to identify and extract shared
information. However, sparse labels limit these metrics to measuring differences in the
distribution of the unlabelled data (marginal-distribution shift) [14,15], which would not
adequately quantify domain similarity if data generated by specific health-states followed
different distributions (conditional -distribution shift).

To address these limitations, this paper proposes using the modal assurance criterion
(MAC), between a source and target structure [16], only using data from the undamaged
state. By incorporating the MAC into a feature-selection criterion, an unsupervised
TL approach based on physics is shown to be able to extract shared information under
conditional distribution shift. Furthermore, this approach only requires normal condition
data in the target domain, so it can be applied before damage is observed in a target
structure.

The structure of the paper is as follows. Section 2 introduces the core concepts
of transfer learning and negative transfer, while Section 3 introduces the MAC-based
feature selection criterion proposed in this paper. Section 4 introduces the experimental
case study, as well as the TL methodology and shows the success of the approach
by transferring label information between two dissimilar helicopter blades. The paper
concludes with a discussion on physics-based similarity for transfer learning in PBSHM.

TRANSFER LEARNING

In unsupervised transfer learning, a source domain Ds = {xs,i, ys,i}ns
i=1, with ns

source instances xs,i each with labels ys,i, and a target domain Dt = {xt,j}nt
j=1 with

nt unlabelled target instances xt,j , are used to learn a classifier that generalises to the
target domain. It is assumed that there are differences in the marginal distributions
P (Xs) ̸= P (Xt), and/or the conditional distributions P (ys|Xs) ≠ P (yt|Xt). Thus, TL
aims to learn a predictive function using labelled data from the source that can provide
accurate predictions on target domain data.

The Problem of Negative Transfer

A critical challenge for unsupervised TL in SHM is performance degradation caused
by transfer, referred to as negative transfer [13,17,18]. The success of knowledge transfer
largely relies on two main factors: the joint distributions of the domains P (Xs, ys) and
P (Xt, yt) are sufficiently related and, the TL algorithms ability to utilise the shared
information [13, 17]. Without labels, both of these issues are generally addressed by
using unsupervised metrics that quantify the distance between the marginal distributions;



two popular choices are the maximum mean discrepancy (MMD) [19] and the proxy-A
distance [20].

Data-based metrics have several drawbacks, particularly in engineering scenarios,
where data are often sparse and expensive to obtain and label. In an unsupervised setting,
these metrics are limited to estimating marginal distribution discrepancy, which will not
provide a robust measure of similarity if there are large differences in the conditional
distributions. Furthermore, the available data in the target domain may only represent
a small subset of the underlying distribution; for example, at the start of a monitoring
campaign of a target structure, only normal condition data would be available, whereas
the source may have a range of health-states to transfer. In such cases, the source and
target label space would be a subset of the source label space (Yt ⊂ Ys), meaning the
metrics would not indicate whether the underlying distributions differ, but rather that the
available subset of the distributions differs.

PHYSICS-BASED FEATURE SELECTION FOR TRANSFER

The issues with unsupervised metrics motivates using physical insight to indicate
feature similarity. One possibility would be to utilise the mode shapes obtained from
an undamaged structure during a limited time period, as recently discussed in [21].
The mode shapes describe the relative modal displacement of the structure, allowing
identification of areas with high sensitivity to local structural changes [22]; hence, they
can be used to indicate which features would have a similar sensitivity to damage in a
specific location. In addition, using only a limited sample of mode shapes, similarity
quantification can be achieved before damage is observed in the target structure, which
is conducive to real-time damage diagnostics.

A popular measure of mode shape similarity is the modal assurance criterion (MAC)
[16]. The MAC is a normalised scalar product between each pair of modal vectors ϕ(i)

s

and ϕ
(j)
t from two modal matrices Φs and Φt, which in this paper relate to the source and

target domains respectively. The scalars are then arranged into a MAC matrix, assuming
real-valued modal vectors; it is given by,

MAC(i, j) = |ϕ(i)
s

T ϕ
(j)
t |2

ϕ(i)T
s ϕ

(i)
s ϕ

(j)
t

T ϕ
(j)
t

(1)

where MAC(i, j) ∈ [0, 1], with 0 indicating no correspondence and 1 is complete cor-
respondence. The MAC between the source and target mode shapes is computed, and
expectation between mode shapes corresponding to pairs of source and target feature
pairs is computed; the metric can therefore be given by,

dMAC(Φs, Φt) = 1
d

∑
i,j∈I

MAC(i, j) (2)

where I = (vs, vt) | vs, vt ∈ Rd represents the pairs of feature indices, where vs, vt are
vectors of integers representing the source and target indices respectively and d is the
feature dimension so the metric is normalised dMAC ∈ [0, 1]; this metric is called the
MAC-discrepancy.



Standard feature selection methods are typically concerned with alleviating issues
related to high feature dimension [23]. This paper proposes a transfer feature criterion
(TFC) that incorporates MAC-discrepancy into a feature selection criterion to address
the challenge of selecting features with high cross-domain similarity. The source loss
is included in the criterion to balance the trade-off between informative and domain-
invariant features, which is a pertinent issue for TL [4]; the criterion to maximise is given
by,

L = − 1
ns

ns∑
n=1

L(fs(xs,i), ys) + λdMAC(Φs, Φt) − µC (3)

where L(·) represents the loss for a source model, λ and µ are trade-off parameters,
and C represents a constraint to prevent the trivial solution of selecting the same feature
multiple times; the constraint is given by,

C =
d∑

i=1

∑
i̸=j

[vs,i = vs,j] + [vt,i = vt,j] (4)

where [·] represents the Iverson bracket, which takes 1 if the values are equal, otherwise,
it is 0. To ensure the most similar source and target features are in correspondence, the
target features are selected as,

vt = argmax
j

MAC(i,j) (5)

A search strategy is required to find a set of source indices. The problem presented in
this paper is low-dimensional so a greedy search is conducted. However, feature selection
is a combinatorial optimisation problem and an exhaustive search is infeasible for high-
dimensional feature spaces; thus, the TFC may be used with heuristic optimisation
strategies when applied in these scenarios [24].

CASE STUDY: HETEROGENEOUS PAIR OF HELICOPTER BLADES

To explore the application of using modal similarity to inform transfer, a case study
consisting of two heterogeneous full-scale helicopter blades is presented. Specifically,
the blades are from a Robinson R44 and a Gazelle helicopter. Both blades are similar in
size and internal structure, suggesting there is potential to share information. Importantly,
there are several discrepancies, motivating the application of TL; these differences are
summarised in Table I.

TABLE I. SUMMARY OF THE KEY DIFFERENCES BETWEEN THE ROBINSON R44 AND
GAZELLE BLADES.

Material Mass Length Width Leading edge Trailing edge
(kg) (m) (m) thickness (mm) thickness (mm)

Metal blade steel 26.95 4.88 0.26 32.70 4.30
Composite blade carbon fibre 37.00 4.83 0.30 28.10 1.00

Modal testing was conducted on the blades in a free-free configuration, utilising
electrodynamic shakers attached in the flapwise direction, applying a continuous pink



Figure 1. The experimental setup to perform modal testing on a metal (right) and composite (left)
blade simultaneously.

noise random excitation up to 800Hz, with a decay rate of 3DB/Octave and a sample
rate of 1600Hz. Data was collected via ten uniaxial 100 mV/g accelerometers, placed
on the underside of each blade along the length, at positions corresponding to the
same non-dimensionalised length and width. To mitigate noise effects, ten frequency
domain averages were obtained. Testing was conducted on both blades simultaneously,
assuring data from both blades corresponded to the same environmental conditions; the
experimental set-up is shown in Figure 1.

Data were collected for five health-states, including the normal condition and four
pseudo-damage states, relating to adding small masses. The added masses were posi-
tioned at standardised lengths and widths of the blades and the size of the mass was
scaled to maintain a consistent ratio between the added mass and blade mass. As such,
the locations of damage should correspond to similar points of a given mode shape and
the extent of “damage" can be considered equivalent for both blades. A summary of the
datasets is given in Table II, where L* and W* refer to the non-dimensionalised length
and width respectively, which were measured from the root and leading edge.

TABLE II. SUMMARY OF THE BLADE DATASETS. THE MASS RATIO BETWEEN THE
METAL AND COMPOSITE BLADE IS 0.728.

Mass state Repeats Mass location Metal blade Composite blade Mass Ratio
(L*, W*) mass (g) mass (g)

M0 25 - - - -
M1 10 (0.627, 0.577) 76.6 105.8 0.724
M2 10 (0.876, 0.577) 76.6 105.8 0.724
M3 10 (0.627, 0.577) 250.0 350.0 0.714
M4 10 (0.876, 0.577) 250.0 350.0 0.714



Figure 2. FRFs for the metal blade (blue) and composite blade (red) with no added masses.

The FRFs up to 250Hz from the sensor closest to the tip are presented in Figure 3.
Initially, it can be seen that there are significant differences between the response of the
blades; the peaks are shifted and there are differences in peak amplitude.

Transfer Learning

The objective was to classify the normal and four damaged states of the blades by
transferring the acquired knowledge from one blade to another. This was accomplished
by considering two tasks, wherein each blade was considered as both the source and the
target domain. These tasks will be referred to as M→C when considering the metal blade
as the source and composite blade the target, and C→M for the opposite case.

The FRF amplitude from one sensor close to the tip was used as a feature. Modal
analysis was performed three times on the normal condition data to identify the regions
of the FRF that should be put in correspondence for transfer. A subset of the frequencies
was chosen by selecting a window of 20 features centred around the natural frequencies,
assuming these regions predominantly correspond to the respective mode; an example
of this feature space is shown in Figure 3. The MAC was found between the mode
shapes of the blades to inform feature selection; the MAC matrix is given in Figure 4.
Nine modes were identified in this range in the composite blade, but to benchmark the
TFC against methods that require a homogeneous feature space, the 9th mode identified
in the composite blade was removed. Note that the first eight modes were already in
correspondence, although this may not always be the case, and in these scenarios using
the MAC to bring modes into correspondence may be even more critical. Also, the last
two modes have lower amplitude, potentially because excitation was applied close to a
node in these modes.

A methodology utilising the TFC in conjunction with DA that further reduces domain
discrepancy and feature dimension was implemented. First, a method that aligns the
mean and standard deviations of the normal conditions, normal condition alignment
(NCA) [25], was applied to account for discrepancies in amplitude. In addition, initial



Figure 3. Example of the feature space after selecting a window of 20 frequencies centred around
the natural frequencies for the metal blade (blue) and composite blade (red).

Figure 4. Modal assurance criterion matrix between the modes of the metal blade and composite
blade normal condition.

alignment was found to be an important preprocessing procedure [25]; thus, NCA was
applied prior to the application of additional DA algorithms.

Two kernel-DA algorithms that have been previously used in SHM were selected to
benchmark the feature selection approach – transfer component analysis (TCA) [6] and
balanced distribution adaptation (BDA) [26]. These algorithms project data into a shared
latent space, by MMD-regularised kernel principal component analysis (PCA). TCA
uses the conventional formulation of the MMD, whereas BDA also attempts to minimise
the MMD between the class-conditional distributions P (ys|Xs) and P (ŷt|Xt), where
ŷt are label predictions. These algorithms were also applied without the application
of the TFC, in order to benchmark its performance. Finally, a K-nearest neighbours
classifier (KNN) was applied for all methods, with one neighbour, as domains with
low distribution divergence should be close in Euclidean space. The approach was
also benchmarked against applying no additional TL beyond putting the features in
correspondence - referred to as no TL.

Hyperparameter selection is challenging in unsupervised TL, as validation schemes
typically rely on using labels. The regularisation hyperparameters were selected as
λ = 0.1 for all cases, while the number of features for each method was determined using
the source data, under the assumption that if the features are sufficiently discriminative
in the source, they should also be in the target. This approach selects two features for
all methods. Since the data were limited, accuracy was determined using leave-one-out



(LOO) validation; accuracy is given by,

Accuracy = TP + TN

TP + TN + FP + FN
(6)

where TP is the number of true positives, TN is the number of true negatives, FP is
the number of false positives, and FN is the number of false negatives. An extension
of the MMD that used labels, the joint-MMD (JMMD), was used to indicate distribution
distance [27]. The JMMD was found on all the data since this metric requires a distribu-
tion of data. It should be noted that the limited sample size may impact the reliability of
the JMMD.

Results

Table III shows the accuracy obtained from LOO validation and the JMMD. It can be
observed that bringing features that relate to similar modes into correspondence allows
some sharing of information, with NCA providing correct classification for some data.
However, the accuracy is significantly compromised compared to supervised learning,
shown by the source accuracy for each blade, which is indicative of domain shift.

Using the TFC, the frequencies relating to the fourth and fifth modes were selected,
improving the generalisation of both NCA and the kernel DA methods. This result
shows that comparing features that correspond to similar damage-sensitive modes can
significantly reduce conditional distribution shift. It also validates the approach of scaling
location and damage extent between structures with different geometries and material
properties. The features are visualised using PCA in Figure 5. In this feature space,
mass-states are in close correspondence and they are discriminative to the shift in normal
conditions. However, since the minor damage classes are close, a small shift in the target
led to a drop in classification performance.

Applying additional DA, specifically BDA (BDA+ in Table III), successfully reduced
this domain shift in both tasks. This methodology resulted in a two-dimensional feature
space, down from a high-dimensional raw FRF feature; the BDA features for both transfer
tasks are presented in Figure 6. However, a potential limitation of BDA is that it assumes
the label space is homogeneous, which may not always be the case in realistic scenarios;
this issue requires further research into partial-DA algorithms [18].

TABLE III. ACCURACY FOR THE SOURCE AND TARGET TEST DATA AND THE JMMD
FOR THE TRANSFER METHODS APPLIED TO THE METAL AND COMPOSITE BLADE.
TCA+ AND BDA+ ARE THE RESULTS OF APPLYING THESE ALGORITHMS AFTER THE
TFC.

No TL NCA PCA TCA BDA TFC TCA+ BDA+

M→C: Source Accuracy 0.98 0.98 0.98 1.00 1.00 1.00 0.98 1.00
M→C: Target Accuracy 0.15 0.71 0.72 0.49 0.77 0.85 0.88 1.00
M→C: JMMD 9.66 5.50 5.90 5.12 0.73 3.58 0.90 0.30
C→M: Source Accuracy 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
C→M: Target Accuracy 0.38 0.58 0.58 0.85 0.85 0.89 0.85 1.00
C→M: JMMD 9.66 5.42 4.24 4.37 1.73 3.85 2.51 0.26



(a) (b)

Figure 5. PCA visualisation of the TFC-selected frequencies, corresponding to the fourth and fifth
modes, for M→C (panel (a)) and C→M (panel (b)), representing 66% and 64% of the variance
respectively.

(a) (b)

Figure 6. Features found via BDA applied to the TFC-selected frequencies, corresponding to the
fourth and fifth modes, for M→C (panel (a)) and C→M (panel (b)).

DISCUSSION AND CONCLUSIONS

Negative transfer is a critical issue for TL in PBSHM. To reduce instances of perfor-
mance degradation, TL algorithms should be able to reliably extract shared information
while minimising the amount of discriminative information discarded. This paper sug-
gests incorporating physical knowledge in the form of the MAC could present a solution
to both of these issues in vibration-based SHM. Moreover, a methodology for TL that
accounts for variations in geometry and material properties has been demonstrated to
effectively transfer label information for damage classification across heterogeneous he-
licopter blades.

This paper proposes a method to evaluate how physics-based similarities could be
used for transfer learning in SHM. However, to extend the findings, future work is
required to investigate the requirements for sensor networks and to evaluate the approach
in structures with realistic operating conditions. This includes robustness to noisy mode
identification, influence of environmental effects, and nonlinearity.
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