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ABSTRACT

Accurately predicting the structural response under dynamic loads is of great
importance to evaluate the structure's performance, monitor the structure's health and
control the vibration. The development of a real-time prediction method is challenging
because the model must have a low computational burden and high running speed. Due
to the computing convergence requirements and complexity constraints, traditional
numerical methods such as the finite element method and the finite difference method
must take thousands to millions of short-time steps to calculate the final structural
dynamic response we really want. After costing a lot of computing resources and time,
these internal steps are worthless but significantly reduced the efficiency of numerical
methods. To tackle this problem, in this paper, we propose a single-step method named
physics-informed implicit Runge-Kutta (PI-IRK) to predict the structure dynamic
response straightly from the initial to the final state. Specifically, we fuse discrete-time
physics-informed neural networks (PINNs) and implicit Runge—Kutta method with
low-expense hide stages. In the proposed method, deep neural network models are
employed as the core to predict the Runge-Kutta stages and the final state. We integrate
physics information such as implicit Runge—Kutta form of structure vibration governing
equation and boundary constraints as the prior information into the neural networks
model. With the assistance of the prior information, the proposed PI-IRK model is an
unsupervised learning model that can be trained without any measurement data. Without
any internal steps, the PI-IRK model can straightly predict the final structural dynamic
response after training. The accuracy of the proposed method is demonstrated by
predicting the structural response of a cantilever beam under a distributed dynamic load
even with a large time step.
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1 INTRODUCTION

In structural dynamics, prediction of structural dynamic response is a key step to
analyze the stability, vibration features and monitor the structural health. Numerical
simulation methods have been widely used in the prediction of structural response of
engineering systems. A large number of engineering cases have been successfully
implemented in recent decades to analyze the stability of structures with numerical
simulation to ensure their design safety. For example, the finite element method, after
decades of development, has become a mature commercial numerical simulation
method and is popular in engineering applications, such as: civil engineering [1], fluid
mechanics [2], thermodynamics [3] and aerodynamics [4]. In modern large-scale and
complex structural engineering, the nonlinear behavior in materials and structures
dramatically increases the complexity of numerical simulation methods, which is still a
heavy task even in large computing resource clusters. In addition, due to the limitation
of the stability, the forward calculation process of the numerical simulation method
relies on thousands or even millions of time steps to ensure the stability and convergence
of the solution.

In order to overcome the above difficulties in numerical simulation methods,
researchers turn their attention to the rapidly developing artificial intelligence. By
exploring the establishment of meta-models to describe the input-output relationships
of simulation systems, researchers strive to implement surrogate models to replace the
time-consuming numerical simulation methods. In the meta-model, some machine
learning methods such as Bayesian regression [5], Gaussian process [6, 7] and support
vector machine [8] have been successfully applied in many engineering problems.
However, most of these machine learning algorithms are supervised learning, which
relies on a large amount of training data to train the model. In the prediction of structural
dynamic response, since the future state is unknowable and unmeasurable, we cannot
obtain the accurate future structural response to train our supervised learning algorithm.

To break the limitation of training data, a novel machine learning algorithm called
physics-informed machine learning [9] (PIML) has been proposed to calculate solutions
of various physics problems. By using physical information, such as governing
equations and boundary conditions, as prior information to train machine learning
algorithms, the training data requirements of PIML are significantly reduced. The PIML
method has been successfully applied in engineering fields, such as physics-informed
neural networks in fluid mechanics [10] and thermodynamics [11], physics-informed
Gaussian process in track dynamics [12] and physics-informed long short-term memory
model in structural dynamics [13].

In this paper, we fuse the idea of PIML with implicit Runge-Kutta (IRK) to propose
the method of physics-informed implicit Runge-Kutta (PI-IRK) to predict the structural
dynamic response in single step. IRK is an excellent method to solve ordinary/partial
differential equations due to its excellent stability, error control and adaptability to large
time step. But how to quickly solve a series of nonlinear equations of implicit stages in
IRK method is still a challenge. In this paper, we try to utilize a deep neural network to
approximate the implicit stages and final solution of IRK. We use the nonlinear
equations between the implicit stages in IRK as prior physics information to train the
neural network model, so we can transform the problem of solving the nonlinear



equations into an optimization problem of neural network loss function. Due to the
stability of the IRK method for long time steps, we can obtain the final state directly
from the initial state without any internal time steps. In PI-IRK, we exploit the automatic
differentiation of neural networks to compute the spatial differentiation in the governing
equations without any discretization errors. Through a case of cantilever beam vibration,
we prove that our proposed method can obtain satisfactory accuracy by utilizing a
gradient-based optimizer to optimize the loss function of the neural network.

2 METHOD
2.1 Runge-Kutta Method

The Runge-Kutta method is a classical method to solve ordinary/partial
differential equations. Let's consider an ordinary differential equation as:
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with initial condition as:
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If we know the solution y,, at time step n, we can calculate the next time step
solution y,, ;1 as:
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Here A = (a;;), ji=12,..» 18 the RK matrix, b = [bj], j=15,..., is the RK weights
vector and ¢ = [¢j], j=1,2,...» 1S the RK nodes vector. v, h is the order and step time of
RK method respectively. &; i1 5 ..., are the RK stages.

If the A matrix is strictly lower triangular, where each ¢; only depends on the
previous RK stages, the RK method is called the explicit Runge-Kutta method. If the A
matrix is not strictly lower triangular, where §; depends on each other, it is necessary to
solve a series of nonlinear equations to obtain the values of ¢;, then the method is called
the implicit Runge-Kutta method.

2.2 PI-IRK Method

Due to the excellent stability of the IRK method and its adaptability to large time
step, we choose the IRK method as our basic method to predict the dynamic response
of structures. But for partial differential equations in structural dynamics, which usually
involve higher-order partial derivatives, it is too complicated for IRK method to solve a
series of nonlinear equations involving higher-order partial derivatives to obtain
accurate RK stages. On the other hand, PINN [14] has been proven to be an effective



framework to solve nonlinear partial differential equations, so we introduce the idea of
PINN to solve the nonlinear equations in the IRK method to obtain the RK stages.
Firstly, let us consider a structural dynamics equation as:

m(x) ii(x,t) + c(x)u(x,t) + k(x)u(x,t) = f(x,t) (5)

where x is the number of degrees of freedom for multi-degree-of-freedom systems or
spatial coordinates for continuum structures. m, ¢, k are mass, damping and stiffness
coefficients at x respectively. f (x, t) is the external force on x at time t. u, u, ii are the
displacement, velocity and acceleration responses of the structure respectively. We
know that the current state (1, V) of the structure system and our target is to predict
the structural response (u;, v;) of the structure with time step h.

We build the s-order IRK form of the structural dynamic equation as:
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Here, (uj, vj) is the j-th order RK step of (u, v) which is obtained by solving the
nonlinear equations of Eq. (6-7). Then we can predict the structural response (u, v;)
with Eq. (8-9). However, it is too complicated to solve these nonlinear equations,
especially when k(x) or f(x,t) in the equation involves nonlinearity. For describing
such complex nonlinear relationships, there are great advantages in deep neural network
models. By defining two multi-output fully connected neural networks model with input
x and output [0}, 07, -+, 07 ,07], [0}, 0%, -+, 0¥ , 0}] respectively, we can use the two
model to approximate the RK steps and (u;, v;) in Eq. (6-9).

According to the physical information of the s-order IRK method described by Eq.
(6-9), the loss function of the governing equation of neural network is calculated as:
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where N is the number of degrees of freedom or the number of collocation points. For
systems with discrete degrees of freedom, the neural network input x is the number of
degrees of freedom, while for continuous deformation systems such as beam and plate,
the neural network input x is the coordinates of collocation points, which are randomly
or equidistantly sampled in the defined spatial domain. These collocation points are
different from the nodes in the numerical method. We do not discretize the continuous
deformation system, and we can predict the structural response not only at collocation
points but at any points in the defined spatial domain. These collocation points can also
vary during the calculation process.



In addition, there are boundary conditions in the structural dynamics, such as the
displacement constrained at the boundary, we can also construct the loss function of the
boundary condition of the neural network as:

lossy, = X5-1]0r () — ()| + 10¥ () — e (xp) 12 (11)

Where, x;, is the point on the boundary condition, u(xj) is the displacement
constrained at the boundary. The weighted sum of these loss functions as Eq. (12) can
be used as the total loss function of the neural network. By employing an optimizer to
minimize the [0SS;,¢q;, the output of the neural network can satisfy the constraint of Eq.
(6-9) gradually, so that the output (o7, of*) can approach the exact solution.

losstorar = Wy * lossy + wy, - lossy, (12)

For continuous system vibration problems, which mostly involve the partial
derivatives of u in space, we can use the automatic differentiation [15] of neural
networks to calculate these partial derivatives instead of numerical differentiation. Since
the neural network can be regarded as a series of operations of matrices and nonlinear
activation functions, if the nonlinear activation function is differentiable, automatic
differentiation can calculate the analytical derivative of neural network output « to input
x along the backpropagation chain of the neural network without discretization errors.

3 NUMERICAL EXPERIMENT

This experiment aims to highlight the ability of the proposed PI-IRK model to
predict the dynamic response of a continuum system. To this end, let us consider a
continuous beam with one end fixedly constrained and the other end vibrating freely.
The governing equation of this cantilever beam is:
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with boundary conditions as:

ou(o,t)  ou®(xgt)  oud(xgt)
u(0,6) = ax 6x20 - 6x30 =0 (14)

where, pA, ¢, El, f (x, t) are the beam mass, damping, stiffness coefficient and external
force respectively. The length of the beam is x,. We consider the length of the cantilever
beam to be 1m. The initial state of the beam is undeformed and static, and it deforms
under the external load f(x,t) = 100 - sin(t) - x. We set the pA = 10,c = 0.1 and
El = 100. With the initial state of the beam, we wish to predict its structural response
state at 5s. We build the IRK form of this problem as:
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Here we take h to be 5s, which means that from the initial state we directly predict the
final state in single time step without any internal time step. In traditional numerical
methods, the time step is usually set to be very small to ensure the stability and accuracy
of the algorithm. The PI-IRK method allows us to take a time step of 5s while still
retaining stability and high predictive accuracy.

We consider a PI-IRK method of order 10. We firstly establish two neural
networks models with 4 hidden layers and 20 neurons per layer. Each model has 11
outputs to approximate RK steps and the final state. The training set consists of Ny =

101 collocation points equidistantly sampled over the whole beam. So, the loss
function loss; of the governing equation is calculated by Eq. (10). In addition, the loss),
of the boundary condition is calculated as Eq. (11).

The total loss function [0SS;y¢q; is calculated as Eq. (12) withwy = 1 and wy, =
100. We employ a gradient-based optimizer Limited-memory Broyden—Fletcher—
Goldfarb—Shanno (LBFGS) algorithm to minimize the (0SS ,¢q;- After 1000 iterations
with a learning rate of 0.1, we obtain the dynamic response prediction of the cantilever
beam at t = 5s as shown in Figure 1. From the initial state directly to the final state,
our PI-IRK method utilizes only single time step to predict the dynamic response of the
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Figure 1. Vibration of the cantilever beam: Top: Benchmark solution obtained by explicit 4-order
Runge-Kutta method. Bottom: PI-IRK solution and benchmark solution at time t=5s



structure with an L2 relative error of 0.00635.

4 CONCLUSIONS

We have introduced the physics-informed implicit Runge-Kutta (PI-IRK) model,
a mesh-free single-step method to predict the structural dynamic response from the
initial state to the final state. In the proposed method, the neural network model is used
to approximate the Runge-Kutta steps of the multi-order implicit Runge-Kutta to
transform the problem of solving complex nonlinear equations into the problem of
minimizing the loss function of the neural network. In addition, due to the continuous
prediction of the neural network, the proposed method can predict the structural
vibration response at any spatial position in the system without interpolation. Through
a case of continuous beam vibration, we demonstrate the accuracy of the proposed
method.
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