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ABSTRACT 

The quantification of wave loading is an important step within the estimation of fa- 
tigue accrual within offshore structures. The direct measurement of wave loads can be 
both challenging and expensive, often requiring the installation of bespoke systems if 
at all possible. The estimation of wave loads based on data from other sensors, more 
commonly found on offshore structures (e.g. wave radars) is therefore highly desirable. 
This paper presents an experimental study of a monopile structure within a wave tank, 
instrumented with accelerometers, strain gauges, a force collar, wave gauges and a ve- 
locimeter subject to a range of wave conditions. Here the dataset is used to construct 
models which combine data-based Gaussian process NARX models with linear wave 
theory. The novel model structures presented rely on only wave gauge data as an input 
and achieve improved predictive performance over purely data-based approaches across 
a range of wave states. 

 

 
INTRODUCTION 

The cyclic loading of an offshore structure due the motion of waves is a driving factor 
of fatigue accrual and therefore has a significant impact of the useful remaining life of the 
structure. The quantification of wave loading, through either measurement or prediction, 
presents its own set of challenges. The direct measurement of wave loads acting on 
offshore structures is rare, and where attempted it often requires the development and 
installation of bespoke systems [1]. Even when measurements may be available, these 
are generally at point locations and do not provide access to a distributed load over the 
structure. The prediction of wave loads across a structure, using data readily available 
from other sensors has the potential to provide access to wave loads where they cannot be 
measured and reduce the cost of implementing additional measurement equipment. This 
paper will focus on the utilisation of incoming wave height data, commonly available 
from wave radars across many offshore structures [2, 3]. 

The modelling of waves and prediction of wave loads acting on structures is chal- 
 

Daniel J. Pitchforth, Dynamics Research Group, Department of Mechanical Engineering, 
University of Sheffield, Mappin St, Sheffield, S1 3JD, United Kingdom, Email: 
d.j.pitchforth@sheffield.ac.uk; 



lenging and forms an extensive field of research [4,5]. The harsh offshore environments,
highly variable conditions and complexity of phenomena such as vortex shedding and
breaking waves makes the validation of physics-based models difficult. Attempts to
represent the underlying physics have lead to the development of Computational Fluid
Dynamics (CFD) models which have been shown to be effective in a range of wave load-
ing prediction tasks [6–8]. A key challenge facing physics-based approaches, including
CFD, is that as the complexity of the phenomena being captured grows, so too does the
required model fidelity. For a case such as breaking wave dynamics [9], the resulting
CFD model is computationally expensive and requires extensive resources (time, money
and technical expertise) to validate.

An ability to model processes without complete understanding of the underlying
physics has been a key driver of the development of data-based models. Here the rela-
tionship between variables may be learned directly, without prior knowledge of how
a process may behave. Within the field of wave loading quantification, neural net-
works [10], Gaussian process NARX models [11] and Bayesian regression [12] have
shown to be helpful tools for capturing the non-trivial relationship between flow condi-
tions and wave force. Although effective when operating within the realm of previously
observed conditions, a tendency to extrapolate poorly, often exhibiting unexpected be-
haviours, and a lack of insight in to how a model operates has posed an obstacle to their
adoption within an industrial setting.

The field of physics-informed machine learning focusses on integrating physical
knowledge with data-based methods in order to benefit from the advantages of either
method used independently. The aim is to create a flexible model, able to provide a de-
gree of insight in to its operation and extrapolate effectively within the limits of known
physics. The means by which combined model structures are created presents an inter-
esting and emerging research topic, overviews of which can be found in [13,14]. Within
the wave loading community, Pena [15] used a CFD model in order to generate train-
ing data for a Generative Adversarial Network (GAN). The resulting model achieved
comparable performance to the CFD simulation with significant reductions in runtime.
Previous work of the authors [16] combined Morison’s Equation with Gaussian process
NARX models to increase predictive performance in cases of limited training data.

This paper has two main objectives: to model the wave load acting on a monopile
using only data of incoming wave height, and to showcase how physical knowledge may
be integrated within Gaussian process NARX models to improve performance and pro-
vide interpretability. Here, linear wave theory is used to improve predictive performance
by providing an approximation of flow conditions as a model input. A key conclusion
drawn is that although the physical knowledge included is imperfect, relying on a num-
ber of simplifying assumptions, it is still able to assist the combined final models.

In the next section, an overview of the experimental setup is presented, detailing the
dataset and generation of wave states. The proposed physics-informed model structures
are then defined, with specific focus on how linear wave theory is utilised for the esti-
mation of flow conditions. Finally, the performance of the final models across a range of
wave states is compared and discussed.



EXPERIMENTAL SETUP

A series of experiments were performed on a monopile structure within the wave tank
at the Laboratory for Verification and Validation (LVV) with the aim of studying wave
loading on offshore structures. Although within a controlled environment, in which the
harshness and high variability of a true offshore environment is not fully captured, the
dataset serves as a useful tool to develop and test model structures before progressing to
real world implementation.

The wave tank had an operational volume 10.74m in length, 0.5m in width and 1m
in depth. Although the tank had paddles capable of generating waves in either direction,
one set of paddles was kept slack as to absorb incoming waves and reduce reflection of
waves back along the tank as much as possible. A series of two wave gauges were used
to capture the free surface of passing waves, whilst an Acoustic Doppler Velocimeter
(ADV) was used to measure water particle velocity and acceleration. A diagram of the
relative dimensions between measurement equipment is shown in Figure 1.

Figure 1: Relative positions of measurement equipment within the wave tank.

The structure was comprised of a 2990mm length of PVC pipe with an outer diam-
eter of 90mm and wall thickness of 5.4mm. In order to reduce the natural frequency of
the structure and to mimic the dynamic behaviour of offshore monopile structures, mass
was added to the top of the structure. The natural frequency was reduced from 2.46Hz
to 0.8Hz via the addition of 8.45kg of mass.

The structure was instrumented with accelerometers, strain gauges and a force collar.
Along with the measurement equipment within the wave tank, this would provide access
to incoming wave heights, flow conditions, wave load, structure response and strain. The
final dataset contained 27 channels, measured at 2048Hz.

Representation of Sea States

The generation of waves utilised representative sea spectra from the JOint North Sea
WAve Project (JONSWAP) [17]. The JONSWAP spectrum is expressed:
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, U10 is the wind speed 10m above the surface, F is the fetch
(the distance over which wind velocity remains constant), g is acceleration due to gravity,
ω is angular frequency, ωp is peak frequency, β = 0.74 and γ is the peak enhancement
factor with exponent a.

By varying the parameters within the spectra, it is possible to define and generate a
variety of ocean states. For this experiment, a series of JONSWAP waves were generated
by varying both γ and ωp, thereby creating a matrix of test conditions. Based on the
capabilities of the wave tank, ωp was varied from 0.7Hz to 1.1Hz in 0.1Hz increments
and γ was varied from 1.3 to 5.3 in 1.0 increments. This was deemed to give a suitably
fine grid of 25 wave states.

INTEGRATING PHYSICS AND DATA

The objective of constructed models is to predict wave load using incoming wave
height as an input, however the relationship between free surface elevation and wave
force is complex. This means that not only is a flexible model required, but also that this
relationship is a highly challenging learning task, placing increased demand on required
training data. The role of linear wave theory is to achieve an approximation of the flow
conditions close to the monopile, thereby reducing the complexity of the learning task
and aiming to increase performance at lower quantities of data. The change in model
structure from a black-box approach is summarised in Figure 2.

The models developed will be used to predict the wave load acting on the monopile at
the force collar, around the region close to the free surface. This is where flow velocities
and accelerations are typically highest and where the maximum forces are likely to be
experienced. The prediction of the largest forces applied to the monopile are the most
important for the prediction of remaining fatigue life.

In this work, an autoregressive form of Gaussian Process Regression (GPR) is utilised
as the data based component of the model, namely, a GP-NARX. An autoregressive
model is a function of previous (lagged) versions of a target variable. They are useful
when the behaviour of a variable is in some way dependant on the past behaviour of
itself or other variables. There are many circumstances in which the inclusion of lagged
variables are useful to aid the modelling of wave loads, including: capturing periodic
trends e.g. dominant frequencies and periodicity of waves; capturing a delay e.g. up-
stream measurements; and representation on higher order terms e.g. approximation of
phenomena such as vortex shedding [11, 18].

A Nonlinear AutoRegressive model with eXogenous inputs (NARX) is one which
considers lagged additional inputs ut−i as well as the lagged target yt−i. These are then
passed through a nonlinear function f(x):

yt = f([ut, ut−1, ..., ut−Lu , yt−1, yt−2, ..., yt−Ly ]) + ε (2)

where, within the context of wave loading prediction, the previous signal values, yt−i

are the wave force and the exogenous inputs ut−i are typically data from other sensors.



Figure 2: A comparison of the proposed physics-informed model structure with a black-box approach.
The measured free surface η is used to approximate flow conditions (water particle velocity U and accel-
eration a) close to the monopile for use as an input to the model, rather than being directly used itself.

Here, for the purely data-based models, ut−i will be measured wave gauge data, whilst
for the physics informed models, ut−i will be the approximated flow conditions. The
determination of maximum lags Lu and Ly will affect model structure and performance;
they should be selected via an appropriate lag selection process [16, 19, 20]. For this
work, optimum lags of Lu = 4 and Ly = 0 were obtained following [16].

Within a GP-NARX, the nonlinear function f(x) is a Gaussian Process (GP), offering
several advantages over NARX models with a fixed functional form. Gaussian Process
Regression (GPR) is a flexible, Bayesian, non-parametric machine learning tool that is
effective within a wide range of SHM subtasks [21–23]. An overview of background
GPR theory is provided within [24] for the interested reader. The primary motivators
for its implementation here are a capability to model continuous functions without re-
striction to a fixed set of basis functions, helpful for capture of the complex relationship
between fluid motion and wave load for which a closed functional form is not known;
and a return of a full posterior distribution due to use of a Bayesian framework. An
associated uncertainty with estimated loads has a significant impact on estimated on the
estimated remaining fatigue life and its representation is therefore important [21, 25].

To integrate wave theory within the GP-NARX, the following workflow is proposed:

1. Perform a free surface reconstruction using the measured surface elevation from
wave gauge 1, located 363mm from the monopile.



2. Construct a velocity field for the sum of linear waves obtained from the free surface
reconstruction.

3. Use the velocity field to achieve an estimate for the flow conditions (water particle
velocity U and acceleration a) at the force collar.

4. Use the flow conditions at the force collar as inputs within models for wave loading
prediction, testing performance using the measured force data.

The reconstruction of the free surface follows the methods described within [26] and
relies on the decomposition of the wave in to a sum of harmonic components. This
allows for the expression of free surface η as a sum of N linear waves.

η =
N∑
i=1

Aicos(kix− ωit+ Φi) (3)

where for the ith wave, Ai is amplitude, ki is the wave number, ωi is angular fre-
quency and Φi is the phase. The measured free surface elevation from wave gauge 1
was used for the reconstruction, with an average NMSE of 15.48% achieved on the free
surface fit at wave gauge 2 across all JONSWAP waves. None of the measured data from
wave gauge 2 was shown to the model before performance was measured.

The reconstruction of the free surface required the decomposition of the wave in to a
sum of linear waves, which provides a useful tool for the derivation of several properties
[5]. An important one of which is the velocity potential ϕ, which when treated as a sum
over N linear waves is expressed:
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where, additionally, g is acceleration due to gravity, d is water depth and ci is wave
speed. The water particle velocities are negative spatial derivatives of the velocity poten-
tial and their calculation for a given range of x and z will allow for the construction of
a velocity field. Noting that velocities here are only meaningful below the free surface,
the horizontal velocity Ux and vertical velocity Uz are expressed:

Ux = −∂ϕ
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from which the horizontal acceleration ax and vertical acceleration az are derived as
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For all wave conditions generated within the tank, an adequate approximation of the
flow conditions at the velocimeter was achieved via the velocity field reconstruction. A
summary of validation performance for the velocities, accelerations and free surface is
shown in Table I. Reconstruction accuracies of 15− 20% were deemed acceptable, and
around the order expected given the use and limitations of linear wave theory [4, 5].

TABLE I. AVERAGE NMSE ACHIEVED ACROSS ALL JONSWAP WAVES FOR THE WATER PAR-
TICLE VELOCITIES UX , UZ AND ACCELERATIONS AX , AZ AT THE VELOCIMETER, AND THE
FREE SURFACE η2 AT WAVE GAUGE 2.

Variable Ux Uz ax az η2

NMSE (%) 15.693 18.853 17.959 20.602 15.480

Where the reconstruction of the flow conditions at the velocimeter and free surface
at wave gauge 2 could be compared with measured data, the measured flow conditions
at the force collar were not available. However it should be emphasised that the flow
conditions themselves are not the property of interest; the wave load is. The success of
the velocity field reconstruction at the force collar shall therefore be determined not by
the accuracy of the reconstructed flow conditions, but whether they provide a useful in-
put to assist a wave loading prediction model. The steps to validate the constructed sum
of linear waves indicate a satisfactory representation of conditions at the velocimeter.
Whether this was repeated at the force collar will be in part determined by the perfor-
mance of wave loading predictions models presented in the next section.

RESULTS

Models were implemented across a matrix of JONSWAP waves as a function of
peak enhancement factor γ and peak frequency ωp. Each model was trained on 300 data
points and tested on an unseen set of 1000 data points. A purely data-based approach
was first considered in which the wave gauge data is passed directly to the GP-NARX
as an input, with the relationship between them learned. This is then compared with
a physics-informed case of approximating the flow conditions at the force collar using
linear wave theory for use as a GP-NARX input. A comparison of the performance for
these cases across the range of wave states is shown in Figure 3.

The results motivate the use of machine learning and physical knowledge in combi-
nation, with the best performing model being the GP-NARX with physically informed
inputs. The use of linear wave to estimate the water particle velocity and acceleration for
use as inputs to the GP-NARX achieved a 15.93% average NMSE across all wave states,
compared with 51.37% average NMSE when the measured free surface was passed di-
rectly to the GP-NARX. The physics-informed model was also able to outperform the
purely data-based approach on all individual wave states, with even the poorest perform-
ing wave state (22.34% NMSE for a JONSWAP wave with γ = 5.3 and ωp = 0.8Hz)
better the best performing purely data-based model wave state (36.55% NMSE for a
JONSWAP wave with γ = 5.3 and ωp = 0.7Hz).



Figure 3: (a) NMSE surface of a GP-NARX with an SE kernel using wave gauge data as an input. (b)
NMSE surface of a GP-NARX with an SE kernel as a function of approximated flow conditions. (c) The
improvements in performance achieved as a result of using the approximated flow conditions as an input.
Models were tested over a grid of JONSWAP waves as a function of peak enhancement factor γ and peak
frequency ωp.

Even though a GP-NARX is a flexible and effective data-based technique within a va-
riety of applications, the inclusion of the reconstructed flow conditions as a model input
was still able to improve prediction quality. By reducing the complexity of the learning
task, the use of linear wave theory was able to assist the machine learning model, even
though it only provides an approximation of flow conditions. This highlights perhaps the
major finding of this work, that physical knowledge integrated within machine learning
models does not have to be exact to be helpful. The limitations of linear wave theory
are well understood [4,5], and are unlikely to fully hold even within laboratory environ-
ments. This is observed within the ∼ 15−20% errors in the velocities, accelerations and
free surface within Table I. However, whether or not the approximated flow conditions
were close to their true value, they were still able to assist the GP-NARX with wave
loading prediction, which was their primary goal.

CONCLUSIONS

Novel wave loading prediction models were developed that utilised only incoming
wave height as a model input. They were implemented on an experimental dataset of
a monopile structure within a wave tank across a variety of representative ocean state
spectra. The data from a single wave gauge, performing an equivalent role to wave
radars installed on offshore structures, was used to predict a wave load measured by a
force collar.

The use of linear wave theory and a GP-NARX in combination was able to offer
significantly improved performance over a purely data-based approach, with the average
NMSE across wave states falling from 51.37% to 15.93%. The approximation of flow
conditions close to the monopile through physical knowledge provided an input to the
GP-NARX that reduced the complexity of the learning task, allowing easier capture of
functional structure and more effective utilisation of available data.
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