
ABSTRACT 

Biannual inspections are required to assess the physical and functional condition of 
our nation’s bridges. The Federal Highway Administration (FHWA) and various 
Departments of Transportation (DOT) in the United States periodically update 
specifications and techniques to normalize and advance the bridge inspection 
procedures. However, some ambiguity remains in these inspection requirements. One 
relevant example relates to inspection intervals and techniques. Currently, FHWA 
requires routine bridge inspection at least every two years, and if necessary, inspectors 
can adjust the inspection frequency. The details of how one would adjust the inspection 
frequency is not specified. And while many advanced techniques, e.g., ultrasonic 
surface wave and AI-based image inspection methods, can be applied to inspect bridges, 
the rationale to use these techniques relies on bridge inspectors’ experience. This study 
focuses on developing a reinforcement learning-based method to assist inspectors in 
managing bridge inspection planning. In this method, a reinforcement learning 
algorithm is utilized to optimize the frequency of inspection and the selection of the 
inspection method. A physics-based damage development model is utilized to simulate 
the deterioration process of the bridge. The reward function designed in the 
reinforcement learning process considers both economic cost and inspection plan risk. 
After training, the reinforcement learning agent can rapidly determine an optimal bridge 
inspection policy based on a bridge’s state, which can minimize both the cost and the 
risk of bridge inspection work. Thus, inspectors can refer to this agent to make a specific 
inspection plan for each bridge based on a bridge’s design, history, and features. 
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INTRODUCTION 
 
Bridge inspection has long been an emphasis by the Federal Highway 

Administration (FHWA) and the U.S. Department of Transportations (DOT) and thus 
researchers and engineers put plentiful effort to enhance the bridge inspection work. For 
example, a new bridge inspection manual Specifications for National Bridge Inventory 
[1] was released in May 2022 to further regulate biannual bridge inspection manners. 
The update for the new bridge inspection manual includes a new bridge condition 
evaluation procedure, with further refining the categories of bridge elements, etc. Such 
an update is aimed to help with consistency, robustness, and reliability of bridge 
inspection work. Besides the procedures, researchers are working to develop advanced 
bridge inspection methods, e.g., electrical resistivity [2] to support inspectors as visual 
inspection is subjective and highly depends on the inspectors’ experience [3].  

Though practitioners in the field have been working hard to improve bridge 
inspections, budget allocations are also constrained. The requirement to conduct 
biannual inspections has the primary goal of increasing the probability of finding 
damage so that a suitable monitoring or maintenance plan can be made. However, 
inspecting each bridge uniformly when an inspection is conducted every two years may 
not be feasible. One challenge is that different bridge types, locations, construction 
materials, among others, make the speed of deterioration vary considerably from bridge 
to bridge [4]. For example, bridges in mild environments will degrade more slowly than 
bridges in extreme environments when other conditions are similar. In addition, older 
bridges should be treated differently than newly constructed bridges. Thus, the argument 
can be made that bridge inspection should be scheduled dynamically based on each 
bridge’s expected state. Manually designing such a schedule for each bridge is time-
consuming due to the large number of bridges in the U.S. And there is no current 
standard for determining a bridge inspection schedule.  

Another challenge is the criteria for adoption of suitable inspection methods. The 
selection of what inspection techniques may be applied in a given situation is 
determined by bridge inspectors, as currently there is no standard for this selection. As 
a result, the decision of applying those techniques is somewhat subjective. And as with 
the bridge inspection schedule, the adoption of a particular advanced bridge inspection 
method should rely on the current bridge’s status. Thus, it is hard to achieve uniform 
standards across an inventory of bridges.  

Considering the aforementioned issues plaguing current bridge inspection practices, 
this paper proposes a novel reinforcement learning (RL)-based approach for bridge 
inspection management. RL is a machine learning technique that involves an agent 
interacting with its environment to learn how to make optimal decisions [5]. Essentially, 
the agent in a RL algorithm observes the state of both the environment and itself, then 
takes an action based on that information. Following the action, the environment 
responds with a reward signal that reflects the quality of the decision made. The agent's 
objective is to learn a policy that maximizes the cumulative reward over time. The 
present study applies reinforcement learning to aid in the management of bridge 
inspections, encompassing both inspection scheduling and method selection. The 
components of a reinforcement learning algorithm - agent, environment, action, state, 
and reward - are deliberately designed to mirror the real-world scenario. The agent, 
similar to a human, will select the next inspection time and method (as action) based on 
current bridge state. And this action will react with the environment, which is bridge 



deterioration process and then the agent will obtain the reward, which is the cost spent 
for the selection of the inspection time and method. This ensures that the policies 
generated by the RL method can be applied to practical problems and yield effective 
solutions. The inspection of crack induced by the corrosion of rebar is selected as a 
representative situation with which to demonstrate the method. Due to a lack of data, 
analytical bridge crack development model [6] is employed to simulate the damage 
degradation process. The simulated damage degradation curves are utilized to train RL 
algorithm. After training, the results from our experiments demonstrate that the use of 
RL methods can optimize the bridge inspection management plan. This approach will 
likely save money when applied to an inventory. 

This paper presents a practical application of reinforcement learning-based bridge 
inspection management method. The first section, Problem Identification, includes the 
scope of the inspection work to be solved using reinforcement learning. The second 
section, Technical Approach, includes the detailed setting of reinforcement learning 
algorithm to solve the problem presented in the first section. In the third section, 
Experimental Validation, the process of our experiment to validate the method will be 
introduced and an optimal inspection management plan will be obtained by comparing 
with current bridge inspection plan.   
 
 
PROBLEM IDENTIFICATION 
 
Bridge Inspection Management and Scope of Problem 

 
Current FHWA procedures enforce a time-based bridge inspection. Under such a 

scheme, concrete deck bridges must be inspected every 24 months [7]. Even though 
several types of testing are available, such inspections are routinely visual [4]. Several 
researchers have pointed out the need for a new rationale to determine the frequency 
and type of inspections based on several factors including: the scope of the inspection, 
the condition of the bridge, and its estimated remaining life of service [8]. Despite the 
number of research studies proposing optimal inspection scheduling schemes [9-11], a 
lack of standards and specifications for such methodologies restrains their 
implementation. 

This study offers a novel RL approach to determine the appropriate inspection 
schedule. The method, based on the use of a physics-based model for current state 
assessment and future states prognosis, can decide both the best time and type of 
inspection. The model is focused on common behavior of concrete decks. Chloride-
induced corrosion, and the cracking associated with it, are deemed the most concerning 
type of deterioration for concrete decks, especially in coastal environments [12] and 
cold regions where deicing salt usage is necessary during winter [13]. The rust 
accumulation causes the eventual cracking of the surface of the deck. Such surface 
cracking is a critical parameter that is used to assign a condition ranking during the 
inspection, thus here it is viewed as important in the decision-making process for 
inspection scheduling. In the following, we will focus on arranging the inspection for 
this specific type of damage.  
 
 
 



Crack Development Model 
 
Predicting crack development in concrete is challenging due to its heterogeneous 

nature and uncertain fabrication process. Probability-based models [14-15] are 
commonly used but lack generalizability to new specimens. Analytical models offer an 
alternative, relying on concrete's physical properties, elasticity, and fracture mechanics 
theories. Uncertainty can be incorporated by randomizing model parameters. 

The analytical model from [6] is employed, assuming concrete with embedded 
reinforcing steel as a thick-walled cylinder with a thin layer of pores covering the rebar, 
where r stands for the distance from the center of the rebar to an arbitrary point inside 
the cylinder, a is the distance from the center to the outer diameter of the pore layer, and 
b is the distance from the center to the cylinder’s outer diameter, which is the concrete 
cover. 

The cracking of the deck is divided into three phases: no cracking, partial cracking, 
and complete cracking. In the first phase, a ring of rust products starts to form around 
the rebar as shown in Figure 1 (b). The weight of this ring of rust is given by: 

 

𝑊!"#$(𝑡) = &2𝑘𝜋𝐷
𝛼

[𝐴𝑡(ln 𝑡 − 1) + 𝐵𝑡] (1) 

 
where A and B are coefficients for the chosen corrosion law [16], k is a coefficient for 
units change, D is the rebar diameter, and 𝛼 is the ratio of the molar masses of steel to 
rust products. The ring of rust exerts pressure on the concrete around the rebar, 
developing radial and tangential stresses according to the theory of elasticity.  

The second cracking stage starts when the tangential stress at r=a becomes higher 
than the concrete’s tensile strength. When this happens, a crack with tip at 𝑟 = 𝑟% 
develops, as shown by Figure 1 (c). The cylinder is then divided into two sections: an 
inner, cracked circumference, and an outer, uncracked one, and the elastic stresses given 
by Equations (1) and (2) are no longer valid. The details on the calculation of 𝑟% can be 
found in [6] and [17]. Finally, the crack tip, determined by 𝑟%, reaches the surface of the 
deck (Figure 1 (d)). After this point, the crack width in the surface becomes larger than 
0 and is computed with the following Equation 2 [6] 

 
 

 
 

Figure 1. (a) Thick cylinder assumption. (b) No cracking. (c) Partial cracking. (d) Complete cracking. 
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where 𝛼 is a reduction factor for the tangential stiffness of the concrete (details in [17]) 
 
 
TECHNICAL APPROACH 
 
Reinforcement Learning Introduction 

 
RL is a machine learning technique used to solve intricate decision-making 

problems across various domains, including gaming, recommendation systems, and 
robotics. In RL, an agent learns to make optimal decisions by interacting with an 
environment through trial and error. The RL framework comprises of an agent, 
environment, state, action, and reward [18]. The agent can be a software program, robot, 
or any other system that receives input from the environment and takes actions. The 
environment can be either physical or virtual and provides feedback to the agent based 
on its actions. The state represents the current information of the system, and the action 
is the agent's decision based on the state. The reward is a scalar value that indicates 
whether the current action is beneficial or harmful to the agent's goal. RL provides a 
policy to solve the optimization problem, which maps states to actions using a set of 
rules, neural network, or other algorithms [19].  
 
RL Framework for Bridge Inspection  

 
Though RL algorithm has identical elements, the settings of those elements are 

different in different problems. This section will introduce how the RL algorithm is set 
to solve bridge inspection management optimization.  

In this study, a convolutional neural network (CNN) [20] has been chosen as the 
primary agent. The CNN takes the state matrix of the bridge as its input and predicts the 
corresponding inspection action. Additionally, it also generates the corresponding value 
function for the input state every six months. To optimize the performance of the CNN, 
the weights are updated using the Stochastic Gradient Descent (SGD) [21] algorithm. 

This bridge inspection management system uses three inspection methods to 
identify corrosion-induced cracks on bridges. The first method is AI-based image 
inspection [22], which provides quick and cost-effective results but is less reliable. The 
second method is visual inspection, which is slower and can only identify visible 
damage. However, the visual inspection method is assumed to be more reliable than the 
AI-based image inspection method because currently we think human is more reliable 
than AI [22]. The third method is ultrasonic wave inspection [23], which is more 
expensive but more reliable. The CNN agent outputs a four-length matrix indicating the 
probability of taking no action or using one of the three methods. The inspection method 
with the highest probability is chosen. The CNN also outputs the value function every 
six months, and its weights are updated accordingly using stochastic gradient descent.  



The RL-based bridge inspection management system updates the state matrix and 
reward after determining the appropriate action (USW/visual inspection/AI-based 
image inspection) or no inspection. In this case, the environment of RL refers to the 
bridge environment, which determines the development of the crack. The bridge 
environment considers material constants, crack development speed, and maintenance 
actions. In this work, the model in the Crack Development Theory section is used to 
simulate the bridge's crack development process. Because each bridge has a unique 
environment, uncertainties are introduced to simulate a specific environment for each 
bridge. The uncertainties are involved in three aspects. The first uncertainty is material 
constant variability, which has been studied by others [24]. The second uncertainty is 
due to damage development, which may differ depending on the area's freeze-thaw 
cycle, temperature, deicing salt usage, etc. [25]. The third uncertainty in this work is 
from maintenance. Since there is no research studying the impact of bridge maintenance 
on damage, we assume the effect of bridge maintenance has uncertainty. With these 
uncertainties, different bridges will have their own crack development model with 
specific parameters. However, the exact crack development curve are unknown during 
the training, and inspectors can only estimate them using inspection data to obtain an 
estimated bridge crack development model. After an action is performed, the state 
matrix will be updated differently based on the specific crack development model. 

The state matrix for the bridge includes structural information, damage status, and 
inspection history. It consists of a size-sixteen vector that represents the current state of 
the bridge. The first three elements correspond to the crack development model 
parameters and the uncertainty of crack development. The next element records the 
current crack width, followed by binary indicators of time since the last inspection. The 
remaining elements represent the age of the bridge in binary. If no inspection is 
conducted, the uncertainty, crack width, and age will be updated in the state matrix. If 
an inspection is conducted, the new inspection data will be obtained, and the parameters 
of the estimated crack development model will be calculated using the true crack 
development model. 

The objective of this RL-based bridge inspection management system is to 
minimize the cost spent on bridge inspection work throughout the whole bridge life. To 
achieve this, the reward element in RL algorithm is composed of three terms, which is 
shown in Equation III:  

 
𝑅𝑒𝑤𝑎𝑟𝑑 = 𝐶𝑜𝑠𝑡!(𝑎) × 𝑅𝑎𝑡𝑒"#$%(𝑐𝑜𝑛𝑑, 𝑎)

+ 𝐶𝑜𝑠𝑡"(𝑐) × 𝑅𝑎𝑡𝑒&'()*+',-(𝑡, 𝑐𝑜𝑛𝑑)
+	𝐶𝑜𝑠𝑡"(𝑐) × 𝑅𝑎𝑡𝑒!"&'#$*+',-(𝑐𝑜𝑛𝑑, 𝑎) (3) 

 
The first term here is the inspection action cost, which represents the cost spent for using 
a selected inspection method. The inspection action cost is determined by two factors: 
the price of the inspection action 𝐶𝑜𝑠𝑡!  and the condition discount 𝑅𝑎𝑡𝑒"#$% . The 
reason for the introduction of the condition discount is that the cost of an inspection 
action may vary depending on the condition of the bridge. For instance, if a bridge is in 
good condition, the visual inspection conducted may take less time and therefore cost 
less. The second term in Eq. 3 is the time-risk cost, which is to represent the cost due to 



waiting a long time with no inspection. This cost is composed of the price of component 
𝐶𝑜𝑠𝑡" and the time-risk rate 𝑅𝑎𝑡𝑒&'()*+',-. The time-risk rate will increase with the 
length of time without inspection and in this work a Weibull distribution [26] is selected 
to describe such increase. The values of parameters l and 𝑘 for Weibull function are 
selected differently when a bridge is in different condition to reflect different impact of 
lasting no inspection on different stage of a bridge. The third term in Eq. 3 is the action 
risk cost. This cost reflects the risk of using different inspection actions. The action risk 
rate 𝑅𝑎𝑡𝑒!"&'#$*+',- is utilized to indicate the risk of an inspection action to the bridge 
at different conditions. 
 
 
EXPERIMENTAL VALIDATION 
 
Experiment Setting 
 

As currently crack development data is not recorded, the simulated crack 
development data generated through the crack development model is utilized in this 
work for training the RL. As described in previous sections, three uncertainties are 
involved for each specific bridge. 

The values and distributions of the initial crack development model are set as the 
following. Concrete cover of bridge deck follows normal distribution with 𝜇 = 63	𝑚𝑚 
and 𝜎 = 3.78	𝑚𝑚  [27]. Rebar diameter 𝐷  follows lognormal distribution with 𝜇 =
19.05	𝑚𝑚 and 𝜎 = 0.03 × 19.05	𝑚𝑚 [24]. 𝛼+.,& is a fixed value which is equal to 
0.57 [6]. The initial values A and B for corrosion rate are set as exponentially distributed 
and the average values used for these exponential distributions are 0.3686 𝜇𝐴/𝑐𝑚/ and 
1.1305	𝜇𝐴/𝑐𝑚/, respectively [6]. 𝜌+.,& and 𝜌,&))0 are 0.36 and 0.785, respectively [6]. 
𝑑1 is assumed to be followed exponential distribution with average value is 0.0125 mm 
[6]. Tensile strength of the concrete, 𝑓&  follows a lognormal distribution with 𝜇 =
3.56	𝑀𝑃𝑎  and 𝜎 = 0.676	𝑀𝑃𝑎  [27]. 𝑣"  is assumed to be exponentially distributed 
with an average value of 0.18 [6]. 𝐸)2 follows a normal distribution with 𝜇 = 30	𝐺𝑃𝑎 
and 𝜎 = 3	𝐺𝑃𝑎 [28]. 𝛾 used in the crack development equations is set as 8000.  

The crack development uncertainty is set as 2% to start. And every half year, the 
simulated crack width is randomly generated based on a Gaussian distribution 
𝑋	~	𝑁P𝑤3+)%'"&)% , 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦_𝑐𝑟𝑎𝑐𝑘 × 𝑤3+)%'"&)%U. In the distribution, 𝑤3+)%'"&)% 
is the predicted crack width from current crack development model. The crack 
development model's A and B parameters are updated by curve fitting after new crack 
width information is obtained. Uncertainty decreases 0.002% every 0.5 year, assuming 
crack development becomes more predictable with time. Maintenance is conducted 
after 10, 20, 35, 50, 75, and 90 years, reducing crack width by 30%-75%. Maintenance 
doesn't affect crack development, as we are assuming it doesn't affect rust thickness. 
When the bridge deck is over 100 years old, or the condition rating has dropped to 3, 
the bridge deck is replaced. A possible crack development curve of one bridge is shown 
in Figure 2 (1), with different simulated crack development curves in Figure 2 (2).  

 



  
                               (1)                                                                (2) 

 
Figure 2. Simulated crack development of (1) one bridge;  (2) several bridges 

 
 
In this work, we manually assign different values to the cost in the reward function 

due to the lack of relevant data recording regional variations. The action price for the 
USW, the visual inspection and the AI-based image inspection method are $120, $50, 
and $10 per time, respectively. The price of the condition discount 𝑅𝑎𝑡𝑒"#$% is defined 
in TABLE I. The time risk rate 𝑅𝑎𝑡𝑒&'()*+',- is defined in TABLE II and the action 
risk rate 𝑅𝑎𝑡𝑒!"&'#$*+',- is defined in TABLE III. 

During training, an epsilon-greedy method [29] balances exploration-exploitation. 
The learning rate is 0.0001, the long-term benefits discount factor is 0.95, and training 
consists of 60,000 epochs. The RL environment is built using Tensorflow [30] and 
Keras [31], and training is performed using a NVIDIA GPU GeForce GTX Titan X. 

 
Results 

 
Under the settings introduced in previous sections, the RL algorithm can be trained. 

The training process is shown in Figure 3. 
 
 

TABLE I. VALUES DEFINED FOR 𝑅𝑎𝑡𝑒"#$% 
Condition Rating 9 8 7 6 5 4 3 

USW 0.7 0.8 0.9 0.9 1.0 1.0 1.0 
Visual Inspection 0.4 0.4 0.5 0.7 1.0 1.0 1.0 
AI-based method 0.7 0.8 0.9 0.9 1.0 1.0 1.0 

 
TABLE II. VALUES FOR WEIBULL FUNCTION IN 𝑅𝑎𝑡𝑒&'()*+',- 

Condition Rating 9 8 7 6 5 4 3 
l 40 20 15 10 5 3 3 
k 3 3 3 3 3 3 3 

 
TABLE III. VALUES DEFINED FOR 𝑅𝑎𝑡𝑒!"&'#$*+',- 

Condition Rating 9 8 7 6 5 4 3 
USW 0.001 0.001 0.001 0.002 0.003 0.003 0.003 
Visual Inspection 0.002 0.004 0.006 0.010 0.030 0.06 0.1 
AI-based method 0.002 0.004 0.009 0.020 0.05 0.35 0.4 



 

  
 

Figure 3. Training process. (1) Inspection cost; (2) DQN loss 
 
 

The trained agent can make inspection decisions based on the current state of the 
bridge. For example, if a bridge deck has been in service for two years, with an estimated 
crack development model of A=0.1287 𝜇𝐴/𝑐𝑚/and B=1.3747 𝜇𝐴/𝑐𝑚/, a crack width 
of 0.0866 mm, and a crack development uncertainty of 1.97%, the AI-based image 
inspection method will be recommended for inspection. However, for a bridge deck that 
has been in service for 69 years, with an estimated crack development model of A=1.0	
𝜇𝐴/𝑐𝑚/ and B=1.0 𝜇𝐴/𝑐𝑚/, a crack width of 0.937 mm, and a crack development 
uncertainty of 0.63%, the USW method is recommended, even if the latest inspection 
was just six months earlier. The RL-based bridge inspection management plan tends to 
reduce inspection frequency and use cheaper methods for bridges in good condition and 
increase inspection frequency and use the USW method for bridges in poor condition. 
The plan can save approximately $10,000 under the simulated bridge crack 
development process as compared to time-based bridge inspection management plans 
based on tests of 1,000 simulated bridges.  
 
 
CONCLUSION 
 

In this paper, the bridge inspection management work has been encoded as an RL 
problem, and then RL techniques have been utilized and trained to help in this work. 
The conclusions of this work include: 
l In our experiment, the RL method has been successfully trained. The trained RL 

agent can rapidly determine the inspection schedule based on the current bridge 
state. The bridge inspection plan generated by the RL method can save around 
$10,000 cost compared to current time-based bridge inspection plan. 

l To improve the RL method's performance in generating better inspection plans, we 
found that more data is needed, as real-world data is lacking. These data should 
include material constants and their uncertainties, precise crack development 
curves for each bridge, the cost and risk associated with different inspection actions 
and bridge conditions, and the impact of maintenance on damage. 

l The bridge inspection work includes other damage and bridge elements and thus, a 
more complex setting should be applied for future RL-based bridge inspection 
management research. 
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