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ABSTRACT

Over the years, various methods based on computer vision have been proposed for
the problem of damage detection and segmentation. Recently, remarkable progress has
been made in this field owing to the emergence of deep neural networks. However, there
is a main assumption among these works that the data collection (e.g., taking photos) is
usually carried out by human inspectors, so there is little occlusion or bad lighting
conditions. With that being said, the uncertainties that could occur in data collection
are handled manually to ensure the dataset is clean and free of confusing or occluded
damages. This assumption limits the applicability of autonomous robotic inspection to
real-world settings due to the uncertainties in data collection and data interpretation. To
bridge this gap, this study integrates the concept of active perception into damage de-
tection and proposes a framework based on the Partially Observable Markov Decision
Process (POMDP) and Deep Reinforcement Learning (DRL). The proposed framework
facilitates the learning process for robotic agents to explore the 3D environment and in-
telligently select informative viewpoints to reduce uncertainty and minimize confusion,
which leads to more reliable decision-making. Besides uncertainty reduction, the DRL
agent can also inspect the workspace more efficiently compared with traditional raster
scanning. The trained DRL agent is evaluated for the autonomous assessment of cracks
on metallic surfaces. Results show that the agent equipped with the active perception
module outperforms the raster scanning inspection by 57% in terms of crack IoU. In
addition, the DRL agent can reduce the total inspection time by two times while the
pregiction accuracy is on par with the raster scanning.

INTRODUCTION

Structural defect detection is an important aspect of structural health monitoring
(SHM). In-time detection of cracks provides important information regarding the condi-
tion of the structure that can prevent destructive events from happening. With the success
of deep learning and computer vision, many models can detect and segment cracks in
images reasonably well [1-4]. However, existing models are mostly passive visual in-
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spection systems that typically fail to detect the damage or produce excessive amounts
of false positives due to bad lighting conditions or viewing angles. Whereas a human in-
spector has the ability to move in the 3D environments and actively control the viewpoint
to gain a better interpretation of the damage. The problem with the passive visual system
is that it treats the image as independent and identically distributed (i.i.d.) data points,
which ignores the potential correlation between the images and throws away important
information like the spatio-temporal consistency in the underlying 3D environment. To
overcome the above-mentioned issue, a deep reinforcement learning (DRL) agent that
leverages the power of active perception is proposed in this study. The proposed DRL
agent exhibits the capability to systematically explore the environment while selectively
directing its attention toward viewpoints that provide more informative cues. To the au-
thors’ knowledge, this is the first work in the field of structural health monitoring that
combines damage detection and active vision, which is one step closer to the realization
of fully autonomous robotic inspection systems.
The main contribution of this work can be summarized as follows:

* Introduce the concept of active damage detection by defining a new task, called
Active Damage Segmentation, where an agent can move in the 3D environment to
perform damage segmentation on a metallic surface.

* To tackle the active damage segmentation task, a DRL model is proposed to select
informative viewpoints to improve the prediction.

* An interactive photo-realistic 3D simulator based on computer graphics is built to
train the DRL model.

» Results show that the proposed RL agent leveraging active perception consistently
outperforms the passive visual system. Moreover, the learned behavior leads to
much more efficient data collection schemes as opposed to raster scanning.

SIMULATION ENVIRONMENT AND DATASET

To train and evaluate the DRL model, photo-realistic steel plates with cracks, welding
seams, and scratches are rendered in a computer graphic tool (Houdini) with texture and
lighting conditions similar to the metallic surfaces that have been inspected in real-life.
Similar to the field scenario, the camera and the light source are mounted on the robotic
arm so the light condition changes frequently as the robotic agent moves around in the
3D scenes. To this end, images are rendered from simulated robotic inspections of 20
damaged metallic surfaces to create a dataset for the training of RL agents. In each
simulated inspection, a dense raster scanning is performed to make sure every part of the
surface is inspected with various lighting conditions. Each synthetic image is associated
with annotations of scratch and crack, which can be extracted automatically from the
scene. Out of the 20 scenes, 10 of the scenes are used for training and the rest of the
scenes are used for testing. Figure |1|shows some examples of the real images captured
during a field inspection of the metallic surface of a nuclear power plant reactor and the
images rendered from the simulation environments.



(a) Real images of metallic surfaces (b) Synthetic images of metallic surfaces

Figure 1. Comparison between images captured from field inspections and images ren-
dered from the simulation environment.

ACTIVE DAMAGE SEGMENTATION TASK

To better implement the concept of active damage detection, a new task called Active
Damage Segmentation is introduced in this study. In this task, 10 unseen metallic sur-
faces in the simulation environment are used as the test set. The goal is to segment out all
the cracks and reduce the false positives as much as possible. The steel surfaces in the
simulation environment are carefully constructed to ensure a close resemblance to the
steel surfaces being inspected in the field. The area to be inspected is 219 x 153 mm?,
the camera moving speed is 25mm/s, and the width of the crack varies from 0.1 to
0.5mm. To cover the entire metallic surface, the agent starts with regular raster scan-
ning to ensure that every corner of the surface is inspected. When the current observation
meets the criteria of an ambiguous frame, the agent switches to active perception mode.
In this study, the frame is deemed to be ambiguous” if the count of pixels with Softmax
scores above 0.6 exceeds 200 in the predicted mask of the current frame. It is important
to note that more advanced and complex criteria, such as uncertainty quantification (UQ)
based on Bayesian networks or other techniques, can also be employed to determine if
a frame is ambiguous or not. After the activation of the “active perception” mode, the
frame that triggers the mode becomes the initial frame /;_; for the interactive process of
active perception. The active perception loop is terminated once the agent chooses the
Terminate action or the time horizon allotted for the episode is exceeded. The agent
will resume the raster scanning pattern after the termination of the “active perception”
mode until it encounters the next frame that activates active perception.

PROBLEM FORMULATION

The goal of active damage segmentation is to propose a sequence of actions (view-
points) and acquire useful new information to enhance the initial prediction mask M;_,
of the first frame I;_;. By aggregating information from new viewpoints, a fused mask
M;_r is generated at the final time step, which serves as the final prediction mask for the
first frame 7;—;. To solve t his task, an approach based on the Partial Observable Markov
Decision Process (POMDP) can be adopted.

A discrete-time POMDP is defined as a tuple {S,A,7,R,Q,0}, where S =
{s1, 82, ..., S} is a set of partially observable states of the world, A = {ay, a9, ...,a,,}
is a set of actions available to the agent, 7 is a set of conditional transition proba-
bilities from state s to state s: P(s'|s,a), R : S x A — R is the reward function,



Q = {01,09,...,01 } is a set of observations, and O is a set of observation probabilities
O(o|s, a) conditioned on the reached state and the action taken.

At each time step, the environment is in some unknown state s € S. The agent
chooses an action a € A, which causes the environment to transit to state s’ € S with
probability 7 (s|s,a). At the same time, the agent receives an observation o € €2 that
depends on the new state s’ with probability O(o|s’,a). Finally, the agent receive a
reward r € R(s,a). This process repeats until it terminates in an episodic setup. Let T
be the trajectory that contains a sequence of (oy, as, ¢), where a; ~ m(-|o;), and Syyq ~
T (S, a;). Given a discount factor v, the optimal policy 7* can be expressed as follow:

T
7" = argmax E...[Rr|, where Ry = Z”ytilrt )

t=1

The objective is to find a policy 7 that maximizes the discounted accumulative return R
over an episode. One technique to find such policy 7 is Proximal Policy Optimization
(PPO) [5]], which is an on-policy algorithm belonging to the gradient-policy family.

ACTIVE PERCEPTION MODEL

To tackle the active damage segmentation task, a DRL model is proposed. The ob-
servations space of the ACS-DRL model consists of RGB images of size 448x448, the
current viewpoint C; € {0, 1}V*V visited viewpoints V; € {0, 1}¥*V, and fused crack
mask M; € [0,1]*18%448 with N = 3 x 448. Each pixel in C; is 0 or 1, indicating whether
the corresponding area is covered by the current viewpoint, and each pixel in V; indicates
if the corresponding area has been visited. Note that the centers of Cy, V;, and M, share
the same global coordinate as the center of /;,—;. The action space A is comprised of a set
of discrete 7 x 7 viewpoints around the current viewpoint of the agent and an additional
Terminate action. The reward r; is designed as follows:

ToU(M;) — IoU(M,;_1) — cost,,, if casel
Ty = { +a, if case 2 2)

—a, otherwise

In Eq.(2), case 1 refers to scenarios where a; # Terminate; case 2 refers to scenarios
where a; = Terminate, FP(M;) < (% FP(M;-1), Recall(M,;) > n; and all other
cases fall into the otherwise case. The values of «, 3,71, andcost,, are assigned as
follows: o = 0.5,8 = 0.9,n = 0.9, and cost,, = 0.01. The fused mask M, averages
the softmax score of the overlapping area between current prediction F; and the previous
fused prediction mask M, .

The detailed architecture of the DRL agent is shown in Fig. 2] The proposed model
consists of two modules, a crack segmentation network and a policy network. The model
generates a fused crack segmentation mask and outputs the next best view based on the
current RGB image, the current viewpoint, and the visited viewpoints. At each time step
fromt = 1tot = T, given an observed RGB image [;, the agent predicts a damage mask
P,, which may or may not be right. Then the agent takes action a, that is specified by
the policy network 7g. The fused mask M;_, is defined as M;—; = f,4,(M;_1, P;) where
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Figure 2. The network architecture of the DRL model for active damage segmentation.

fagg(+) is a function that takes in previous fused mask };_; and current prediction P, and
fuses them together to generate fused mask M;. A simple average function is employed
in this study. However, more sophisticated functions, such as Bayesian update, could be
utilized as alternative aggregation functions.

The segmentation network predicts the damage mask F; given a single RGB image [;
at each time step. The architecture of the segmentation network is based on U-Net++ [6],
which utilizes the ResNet-101 [7] model pre-trained on ImageNet as the backbone. The
segmentation network is fine-tuned on an online crack dataset [8]] to identify cracks
on metallic surfaces. It should be noted that the segmentation network is not trained
on images from the simulation environment, as it can easily overfit to the simulation
environment, which hinders it from learning any useful viewpoint selection policies.
This study emphasizes the importance of selecting informative viewpoints and observing
the same area from different perspectives to correct the final predictions. Therefore,
it is reasonable to start with an imperfect segmentation network. The weights of the
segmentation network are frozen after the fine-tuning and during the training of the DRL
agent.

The policy network is an actor-critic style network that takes in the current RGB
frame 7}, current prediction F;, current viewpoint C}, visited viewpoints V;_1, and fused
mask M, 1, and outputs a probability distribution over the action space A. During test
time, the action with the largest probability is taken by the agent. The CNN feature
extractors in Figure 2] uses EfficientNet-BO to extract the features and form the state em-
beddings of the DRL agent. The embeddings are then concatenated and fed into two
separate branches called actor-network and action-network, which follow the conven-
tion of the actor-critic network [9]. The actor-network and the critic-network employs
the same architecture, which contains a Gated Recurrent Unit (GRU) layer followed by
two fully connected layers. The Generalized Advantage Estimation (GAE) is used to



stabilize the variance of the expected rewards. The entire policy network is trained using
the PPO algorithm.

EXPERIMENTS AND RESULT ANALYSIS

To evaluate the performance of the DRL agent, the proposed method is compared
with raster scanning on 10 unseen metallic surfaces. To inspect the metallic surfaces,
the agent starts with regular raster scanning and switches to active perception whenever
the count of pixels with Softmax scores above 0.6 exceeds 200 in the current frame. The
frame that activates the active perception serves as the starting point /;—; for the active
perception process. Once the T'ermination action is selected, the agent resumes raster
scanning until it encounters the next frame that activates active perception.

TABLE I. Quantitative comparison between raster scanning and active damage segmen-
tation at different overlap ratios

Pure Raster Scanning Active Damage Segmentation
Frames Crack F1 FP Crack F1 FP
Overlap IoU mloU Score Cracks | IoU mloU Score Cracks

None 0.2629 0.6315 0.4164 4 0.4129 0.7110 0.5935 0
25% 0.3648 0.6824 0.5346 7 0.5230 0.7615 0.6868 1
45% 0.4026 0.7013 0.5741 7 0.5257 0.7629 0.6891 1
63 % 0.4618 0.7309 0.6318 5 0.5763 0.7882 0.7312 0
81% 0.4611 0.7306 0.6312 6 0.5770 0.7885 0.7317 0

The performance of the DRL model is evaluated using the above-mentioned active
damage segmentation task. The agent inspects the entire surface, and the mloU score
of the predicted mask, the IoU score of the crack, the count of false positive crack in-
stances (FP Cracks column in Table[l), and the duration of inspection are reported. If the
number of connected pixels with softmax scores higher than a certain threshold is more
than 1000, then the blob on the predicted segmentation mask is determined as a crack
instance.

As shown in Table [I} the active damage segmentation framework can achieve a no-
table improvement in the crack IoU, with an increase of up to 57% compared to raster
scanning. Furthermore, the proposed method consistently outperforms the raster scan-
ning approach across all other cases. The proposed method also shows promising results
in terms of data collection efficiency. A comparison between the 25% overlapping case
in active damage segmentation and the 81% overlapping case in raster scanning reveals
that the proposed method is able to perform a rapid inspection that reduces the total in-
spection time by more than two times while yielding a 12% higher crack IoU. The count
of false positive crack instances is also reported in the ”FP Cracks” column in Table|l} It
can be observed that the false positive crack instances are reduced to very low numbers
when DRL models are used, which is another strong support for formulating the damage
detection tasks as active perception problems. Table[[l| shows the detailed breakdown of



TABLE II. Detailed breakdown of total inspection time

Pure Raster Scanning Active Damage Segmentation

Frames None 25% 45% 63% 81% |None 25% 45% 63% 81%
Overlap

Total Time (Sec) 232 31.8 47.0 63.7 101.9| 33.6 48.0 69.1 106.5 138.9
Data Coll. (Sec) 232 31.8 47.0 63.7 101.9| 28.8 42.0 623 949 110.9

Computation (Sec) - - - - - 48 6.0 68 11.6 28.0
Time Step 1.0 8.0 150 240 1200 23 23 23 23 23
Same Area From . Active Damage
Different Viewpoints Ground Truth Raster Scanning  gaomentation

Scene 1:

Scene 2 -

Figure 3. Sample predictions obtained from raster scanning and active damage segmen-
tation.

the total inspection time of active damage segmentation in different cases. For conven-
tional raster scanning, the “Time Step” row is equivalent to the number of frames that are
fused with the initial frame and overlap with the initial frame, provided the viewpoints
are discretized with an 81% overlap between the neighboring frames. It shows that the
DRL agent learns to select fewer but more informative viewpoints to improve the mloU
of the crack segmentation mask. Figure [3]illustrates a set of samples comparing the pre-
diction masks obtained through raster scanning and active damage detection. It can be
observed that the crack prediction is accurately persevered, while a majority of the false
positive scratches are eliminated when active perception is incorporated.

CONCLUSIONS

This study introduces a deep reinforcement-learning-based active vision model for
damage detection. To train and evaluate the RL agent, photo-realistic synthetic 3D
scenes were constructed, and a dataset was generated. The agent can move freely in
the 3D scenes and improve the accuracy of the predicted masks by selecting informa-
tive viewpoints and fusing the information from those viewpoints. The DRL agent also
learns to terminate the episode early, which leads to efficient data collection. Evaluation



on metallic surfaces shows that the agent can increase the crack IoU by up to 57% when
compared to pure raster scanning. Additionally, the agent can conduct a rapid inspection
that reduces the overall inspection time by more than two times while achieving a 12%
higher crack IoU than that of the dense raster scanning approach.
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