
ABSTRACT 
In recent decades, infrastructure aging, new social behavior, urban and rural 
environmental changes, and nature extreme events have increased in complexity. 
When disasters occur, saving lives, and providing access to emergency teams is a 
priority where every second saved is critical. Researchers in Structural Health 
Monitoring (SHM), government laboratories, and industry leaders are using sensors, 
field deployments, algorithms, and signal processing to assist and prioritize 
decisions. If the collection of data would be accelerated with near-real time interface 
with engineers in the field, emergency responders, safety, and maintenance could be 
integrated with machines in real-time, and new solutions could be advanced. This 
paper summarizes new work on human decisions exploring the concept of human- 
machine-structure interfaces associated with structural dynamics and damage, to 
transform human decisions using new interfaces. The interface between human and 
structures is achieved with Augmented Reality (AR). The results include work in 
human-in-the-loop with application on near real-time computer vision, human-robot 
teaming, and a new infrastructure maintenance paradigm centered in augmenting the 
capabilities of humans in the field. The platform of human-robot teaming is further 
advanced in dynamics and control of humans using data obtained from robots and 
vice versa. Future research includes human-centered inspections, and human- 
machine control theory. 
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INTRODUCTION 
 
The increasing complexity of infrastructure, evolving social behavior, environmental 
changes, and natural disasters necessitate effective decision-making and timely 
response. Researchers, government laboratories, and industry leaders are leveraging 
sensors, algorithms, and signal processing for improved decision-making and safety 
integration. However, there is a need for accelerated data collection and real-time 
communication. This paper explores the use of AR as a human-machine-structure 
interface to enhance decision-making processes. AR provides real-time, three-
dimensional visualization, overlaying computer-generated content onto the physical 
environment, thereby improving the user experience and decision-making 
capabilities.  
This paper explores the applications of AR technology in structural dynamics and 
damage, focusing on human-centered crack inspections and human-robot interaction 
(HRI). Traditional image-based crack inspection methods have limitations in real-
time processing and compatibility with human inspections. By integrating AR into 
crack detection, the process can be transformed with real-time data acquisition, 
hands-free detection, and overlaying crack indications on the real structure. The paper 
presents a human-in-the-loop computer vision methodology that utilizes AR head-
mounted display devices to enhance the accuracy, comfort, and efficiency of crack 
inspections.  
The paper also explores AI-driven HRI methodologies, including the use of sensors 
and the benefits of combining AI algorithms with AR technology. AR-driven HRI 
leverages the immersive nature of AR to create interactive environments for humans 
to interact with robots, enhancing perception and enabling safer inspections of 
infrastructure. The paper proposes an AR interface architecture that combines real-
time data analysis by robots with human control and computer-generated information 
through AR, facilitating effective planning and task prioritization. 
 
 
AR TO INTERFACE HUMAN, MACHINE AND STRUCTURE  
 
 AR Overview 
 
AR refers to the superimposition of digital or computer-generated content onto the 
physical environment. It merges virtual and physical components in real-time and 
three dimensions. Unlike virtual reality (VR), where users are fully immersed in a 
virtual environment, AR enhances the user's experience of the physical environment 
by providing a visualization of virtual objects within the real world. Initial attempts 
to incorporate AR into engineering applications started in the 1960s. However, early 
holographic optical elements had limitations in terms of resolution, mobility, and 
field of view, which limited their practicality. In the following decades, the research 
community focused on addressing visualization and technical challenges. Since the 
2000s, AR technologies have advanced significantly, enabling the development of 
prototype solutions for engineering. The institutionalization of AR technology in 
engineering applications depends on future progress in AR software and hardware. 



This includes reducing device weights, improving processing capabilities, resolving 
compatibility issues, and enhancing holographic lenses and field of view for AR 
head-mounted devices [1]. 
 
AR Applications in Structural Inspection  
 
AR has shown potential for infrastructure inspection and vibration analysis. By 
simulating designed structures before construction, providing virtual site visits, and 
facilitating online interaction, AR enhances the inspection process. Additionally, AR 
enables a more comprehensive and accurate assessment of infrastructure, improving 
decision-making and maintenance strategies [2], [3]. Through the time machine 
measuring application, users can save and restore virtual representations of physical 
objects, allowing them to measure and track changes based on color-coded 
representations. This capability is particularly relevant for SHM, as inspectors can 
detect damage patterns and assess the progression of structural changes over time [4]. 
AR empowers inspectors to gain deeper insights into the behavior of structures and 
make informed decisions based on real-time data [5]. 
AR has capabilities in automation and control of robots for infrastructure 
management. By integrating AR into robot control interfaces, users can view the 
environment from the robot's perspective and execute commands for sensor pick-
and-place sequences. This technology proves especially beneficial in hard-to-access 
areas where traditional construction methods are costly and time-consuming. Robots 
equipped with AR capabilities can inspect infrastructure in hazardous or challenging 
locations, enhancing safety and efficiency. The integration of AR and robotics holds 
tremendous potential for optimizing the construction and maintenance of 
infrastructure [6]. 
 
 
INTERFACES FOR AUGMENTING HUMAN CAPABILITIES  
 
This section describes the interfaces used for augmenting the capability of humans in 
this research. 
 
Human-Centered Crack Inspections 
 
Past studies have proposed novel image-based crack detection with high accuracy 
and near real time processing capabilities. However, image-processing crack 
detection depends on use of computer, and a human user needs to orient the real crack 
based on the crack image on computer screen. Because crack positioning from an 
image is a time-consuming process and therefore even if the computer is in the field, 
the processing is not in real time. Therefore, the proposed image-based crack 
detection methods are not compatible with human field inspections. To adjust image-
based crack detection for human inspectors, past studies proposed using AR platform. 
This approach can be implemented by deployment of an image–processing crack 
detection/characterization tool in AR head mounted display (HMD) devices that 
transforms human visual inspection process through real-time acquisition and 
processing of field data. This section shows the transformation of the image-based 
crack detection/characterization methodologies to AR domain. 



 
HUMAN-IN-THE-LOOP COMPUTER VISION METHODOLOGY  
 
This research employs HoloLens headset by Microsoft Corporation to implement the 
methodology (Figure 1) but the methodology is applicable for any AR-HMD devices 
with integrated computing capability. Csharp programming language and Unity 
Game Software were employed to process the pattern recognition algorithm. First, a 
median filter reduces the noise in the image and then Canny algorithm with Sobel 
Kernel extracts the crack. Afterwards, the pixel counts between the crack edges are 
evaluated and the width and the length of crack in pixel is estimated. Then the 
research team employs the capabilities of AR-HMD devices to determine the headset-
crack distance and thereby change the crack pixel count to metric or imperial 
measurement. Finally, the AR-HMD devices overlay the crack with a crack image in 
a noticeable color and show the measurement in front of the user [2]. 
 
EXPERIMENTS AND RESULTS 
 
Figure 2 shows the AR-HMD devices overlay the crack with crack image in a 
noticeable color and Figure 3 shows the measurement in front of the user. 

 
Figure 1: the AR-HMD device to implement the methodology.  

      
(a)                                                                             (b) 

Figure 2: crack detection with AR-HMD devices; (a) unprocessed image (b) processed image inside 
the AR-HMD device 

 
Figure 3: crack measurement with AR-HMD devices 



In addition, the research group conducted several detection and measurement 
experiments. The results of crack detection field-test confirm the practical 
effectiveness of the developed AR application. For instance, the results show that the 
AR tool detected 75% of the length of tested cracks during the experiments, and the 
maximum error for the measurement of the crack width in field and laboratory 
experiments are 16.7% and 13.3%, respectively.  
 
 
HRI APPROACH  
 
Despite significant progress in robotics technology, HRI remains a significant 
challenge [7]. Past studies has highlighted the significance of this interaction in 
different fields of application, for example, according to research presented in [8], 
approximately 90% of small-to-medium-scale enterprises in the United States could 
benefit from collaborative automation.  
In the context of human-centered automation, whose principles  are outlined in [9], 
the primary focus of HRI is on prioritizing human safety, optimizing ergonomics, 
and enhancing the collaborative efficiency of work processes. Additionally, robots 
need to communicate and interact with humans in a natural and intuitive way meaning 
that robots must be able to recognize and interpret human behavior, and 
communication patterns and respond appropriately. The rest of this section explores 
different strategies for human robot teaming using AR and AI and proposes a method 
to integrate AI and AR for HRI. 
  
AI-DRIVEN HRI 
 
Methodologies using AI-based HRI conventionally have two main steps. In the first 
step, an AI algorithm based on the data acquired by a sensing system infers human-
action intention. In the second step, a robot-control policy based on human-action 
intention step is constructed and implemented. The sensing systems are broadly 
grouped under one of the wearable and nonwearable sensors. TABLE I shows the 
attributes that are usually measured in wearable and nonwearable sensors and some 
exemplary publications that have gathered those cues. Additionally, red-green-blue 
(RGB) cameras are commonly used as imaging sensors in non-wearable sensing 
systems. 
There are three primary approaches to estimate human intention: intention parameter 
estimation, action recognition and intention classification, and inverse optimal 
control/inverse reinforcement learning (IRL)-based intention inference. Intention 
parameter estimation involves modeling continuous or discrete dynamics using 
dynamic neural networks (NNs) with noise for deterministic modeling [15]. In the 
case of probabilistic models, Gaussian processes (GPs) and Gaussian mixture models 
(GMMs) are used [16]. Humans can also be represented by their motion dynamics 
for estimating the class of human intention using hidden Markov models (HMMs) 
[17], dynamic Bayesian networks [18], and conditional random fields (CRFs) [19]. 
The third approach involves representing action plans as policies in terms of state-
action pairs. Then to model intention-driven behavior, inverse optimal control (IOC) 
[20], and inverse reinforcement learning (RL) algorithms are employed, where the 
intended motion maximizes an unknown objective or reward function [21]. In the 



context of infrastructure inspection and maintenance, AI-driven HRI can transform 
the way we carry out these critical tasks. By using AI algorithms, robots can interpret 
and analyze data collected by sensors to identify potential issues and prioritize them 
for human attention.  
 
AR-DRIVEN HRI 
 
There are three commonly used strategies for HRI using AR, namely the control 
feedback, workspace, and informative approaches [22]. The control feedback 
approach primarily utilizes AR elements to provide feedback on user-generated paths 
or generic inputs. Path feedback involves providing information on a series of 
interconnected points created by the user, while input recognition focuses on offering 
feedback on various user inputs. The workspace approach involves utilizing AR 
content to display the occupied area by the robot manipulator. The primary goal is to 
ensure a safe working environment by highlighting potential collision zones with the 
robot. On the other hand, the informative approach utilizes AR technologies to 
visually present general information related to either the industrial robot or the 
specific task at hand. 
Figure 4 shows the architecture of the AR interface used for HRI in this study. The 
interface is tested using a Microsoft HoloLens AR-HMD and a Kinova Gen3 robotic 
arm. First humans can intuitively change the position of the holographic gripper and 
constraints for intuitive robot control (step 1). Next, the transformation of the 
mentioned holograms including their rotation and position are achieved using the 
headset capabilities (step 2). The transformation matrix between the robot base frame 
and AR headset coordinate systems were previously experimentally calculated using 
a calibration setups (step 3). The headset and base frame coordinate systems are 
shown in Figure 4. The position and orientation of the holographic objects are 
reported to a computer modeling software that is Matlab where the safe trajectory is 
planned for the real robot (step 4). Humans can see and confirm the robot’s planned 
path both on the computer and in AR-HMD using their own discretion (step 5). If the 
path is confirmed by humans, the joint angle for the trajectory is computed based on 
inverse kinematic of the Gen3 arm model (step 6). Finally, a high-level command is 
sent to the Matlab Application Programming Interface (API) for Kinova Gen3 to 
move the robot arm using its forward kinematics functionality (step 7). 
 
 
CONCLUSION 
  
The integration of AR technology into human-machine interfaces has the potential to 
revolutionize decision-making processes in engineering applications. This article has 
highlighted the advancements in AR technology and its applications in structural 
dynamics, damage detection, and infrastructure inspections. 
It has also explored the potential of HRI and the integration of AI algorithms to 
enhance the collaborative efficiency of work processes.  Future research in human-
centered inspections and human-machine control theory will further advance the 
capabilities of AR in engineering applications. 
 
 



 

TABLE I. STUDIES THAT MEASURED THE CUES WITH WEARABLE AND 
NONWEARABLE SENSORS  

Publication Measure cues Type 
[10] Heart Rate 

Wearable [11] Skin Response 
[12] Electromyography 
[13] Human Emotion 

Nonwearable [10] Approval Responses 
[14] Skeletal Movement 

 
 

 
Figure 4. the architecture proposed AR interface for HRI 
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