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ABSTRACT 
 

This study investigates the use of an optical-based balance sensor and a muscle- 
mimetic wearable robot to evaluate and improve balance in elderly people with various 
health conditions. We analyzed data from 149 subjects to extract critical temporal and 
frequential features related to balance, such as center of pressure (CoP), center of gravity 
(CoG), and theta angles, to categorize them into five distinct levels (i.e., levels 0,1,2,3, 
and 4). A correlation analysis between balance sensor features and gastrocnemius 
lateralis (GL) muscle maximum voluntary contraction (MVC) confirmed our 
hypothesis that subjects with stronger GL muscles maintained better balance. Hence, 
we developed a wearable muscle-mimetic robot to compensate for the weakened GL 
muscle. The GL muscle-mimetic ankle robot, which mimics muscle mechanical 
properties and uses human intrinsic physiological signals for control, simultaneously 
relaxes and contracts with the GL muscle to enhance postural stability and balance. 
Furthermore, testing the wearable robot with the balance sensor demonstrated 
promising results in enhancing balance, as evidenced by the decreased variance of CoP 
when the robot was worn. Our findings suggest that the optical-based balance sensor 
and muscle-mimetic wearable robot provide an effective approach for assessing and 
improving balance in elderly individuals, with potential implications for reducing fall 
risk and improving postural stability in aging populations. 

 
 

INTRODUCTION 

Human balance ability is vital in various aspects of daily life, including walking [1], 
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running [2] and maintaining an upright posture [3]. This fundamental skill is also 

essential for preventing falls [4], particularly in older adults [5] and individuals with 

balance or sensory impairments. A thorough understanding of the underlying 

mechanisms of human balance is crucial for developing effective interventions, 

improving overall mobility, and enhancing quality of life. 

There are numerous subjective measures of balance, including the Berg Balance 

Scale [6] and the Timed-Up-and-Go test [7]. However, there is still a demand for 

quantitative, objective measures that accurately and reliably assess balance. Such 

measurements could elucidate the mechanisms underlying balance control and facilitate 

continuous monitoring of balance improvement when being compensated with 

wearable assistive devices. Force platforms [8] are widely used in laboratory settings to 

measure ground reaction forces [9] and compute the center of pressure (CoP) [10] 

during static and dynamic balance tasks. These devices provide quantitative data on 

postural sway, which can be used to evaluate balance ability. While certain risk factors 

for balance impairments, such as age and specific medical conditions, are well-

established, other potential factors may be less recognized. Identifying these additional 

risk factors could enable targeted interventions for individuals at a heightened risk for 

balance impairments. It is evident that balance impairments contribute to fall risks. 

However, the precise factors connecting balance issues to falls remain incompletely 

understood. Consequently, enhancing our understanding of the relationship between 

balance and falls could result in more effective fall-prevention interventions and 

assistance through wearable devices. To attain a comprehensive understanding of multi-

information and image-based assessment, a high-resolution balance sensor was 

developed in a previous study [11]. The sensor used in this study aims to address the 

aforementioned gaps and provide methods for the assessment of balance improvement 

by wearable devices. 

Researchers have developed and employed robotic exoskeletons to enhance human 

balance capabilities [12-14]. When an exoskeleton is utilized to control joint movement 

or balance abilities, it generates control signals, thus necessitating a high degree of 

responsiveness. According to a study, in order to improve the standing balance of human 

users, exoskeletons must exhibit faster response times than physiological responses [15]. 

This finding aligns with the well-established principle that controlling a high-bandwidth 

system with a lower-bandwidth controller can be challenging, as the controller may not 

be able to adequately respond to the system's high-frequency dynamics. To effectively 

employ a robot or exoskeleton to improve human balance, two primary strategies can 

be pursued. The first approach entails enhancing the response speed of the robot or 

exoskeleton by developing faster robotic actuation technologies. The second strategy 

involves integrating hierarchical human and robot two-system control approaches by 

using a single controller, so as to avoid different motion information from the robot and 

human two control systems. For individuals with paralysis or disabilities, the robotic 

controller can concurrently actuate the human body and the exoskeleton. [16,17]. In 

other application scenarios, the robot serves as an assistance device, compensating for 

muscle strength to improve balance, which implies the by utilizing of the human body's 

inherent proprioceptive sensory information by the robot. 

The human vestibular system, visual system, and somatosensory work together to 

process sensory information, enabling the central nervous system (CNS) to generate 

appropriate motor responses that maintain balance [18]. The CNS integrates the sensory 

information from these systems and generates motor commands to activate various 



muscles in a coordinated manner, maintaining balance and facilitating movement [19]. 

The motor commands are transmitted through the spinal cord to the peripheral nervous 

system, which innervates the muscles, modulating their force production and adjusting 

joint angles to stabilize the body [20]. The human body can maintain balance by 

controlling muscle activity through the nervous system. Therefore, an ideal robotic 

system should be able to match or surpass the response speed of human muscles. 

Furthermore, the system should be capable of receiving control signals from the human 

body, which would then be "translated" into control commands and relayed to the robot, 

thus facilitating the process of muscle compensation. 

The gastrocnemius muscle plays a crucial role in human balance control by 

maintaining postural stability [1] and counteracting external disturbances by generating 

of appropriate forces at the ankle joint [21] in standing balance control. However, aging 

can result in decreased gastrocnemius lateralis (GL) muscle strength, which may 

adversely affect balance. In this study, we introduce a muscle-mimetic wearable robot 

designed to compensate for the diminished GL strength, along with an optical-based 

balance sensor for the objective, quantitative, and continuous evaluation of fall risk level 

and the effectiveness of the robotic compensation on human balance. 

 

 

METHODOLOGY 

 

Development of the balance sensor 
 

The balance sensor is designed based on the principle of total internal reflection 

optics. Two glass plates are placed at an angle of 45 degrees inside the sensor to reduce 

its height. When a human foot touches the sensor surface, total internal reflection is 

achieved to generate an image that is reflected through the angled mirrors and captured 

by the camera. Although this arrangement does not affect the image clarity, it halves the 

required sensor height [22]. This angled glass plate configuration not only saves floor 

space but also minimizes the risk of subjects falling when standing on the sensor. 

Leveraging this compact design, the sensor can precisely detect human balance by 

analyzing the reflected foot image. The structure and appearance of the balance sensor 

are illustrated in Figure 1. The concept of utilizing total internal reflection is inspired by 

a previous texture sensor developed in our lab [23]. 

We developed a web interface for the balance sensor where there is a “Fill in 

information” button where users can input tester information and the required duration 

of the experiment. We typically set the video duration to 30 seconds. When the users 

click the “Take Video” button, the testers have 30 seconds or another set seconds to 

complete the test. This will record 30 seconds or more of video into the camera. 

Subsequently, the captured video can be transferred from the camera to the computer 

for further analysis. Given the frame rate of up to 30 frames per second, each video 

encompasses approximately 900 frames in total. 

 



 
 

Figure 1. a. The structure [24] and b. The appearance of the balance sensor 
 

Development of the muscle-mimetic wearable robot 

 

To mimic the functionality of the GL muscle, a muscle-mimetic robot has been 

designed to emulate the mechanisms that are intrinsic to the GL muscle. The anchoring 

points of the robot are strategically positioned at the heel and knee, mirroring the 

attachment sites of the GL muscle. As illustrated in Figure 2, the orientation of the 

muscle-mimetic actuator aligns with the gastrocnemius muscle, situated at the posterior 

aspect of the lower leg. By emulating the mechanical properties of the GL muscle, the 

robot can synchronize its movements with the natural muscle contractions and 

effectively compensate for the deficiencies in GL muscle strength. 

The robotic system is designed to interpret physiological signals from the human 

body and convert them into actionable robotic commands. Consequently, the GL robot 

leverages the individual's innate control signals to adopt the human body's 

neuromuscular control strategy for generating appropriate tension. Governed by 

electromyographic signals originating from intrinsic physiological data, the GL muscle-

mimetic ankle robot concurrently engages in relaxation and contraction with the human 

gastrocnemius muscles. When the body experiences perturbations, causing it to sway 

forward or backward, the GL robot and other musculature surrounding the ankle joint 

collaboratively generate corrective torques to reestablish equilibrium. 

 



 
Figure 2. Wearable gastrocnemius lateralis (GL) muscle-mimetic robot. a. subjects wore short pants 

and robots and b. robots wear underneath long pants. 

 

 

EXPERIMENTAL RESULTS AND EVALUATION 

 

Our balance sensor has been tested on 149 elderly subjects aged 65 and older with 

various health conditions. The experimental protocol involved subjects removing their 

shoes and socks and standing barefoot on the two glass plates on either side of the 

balance sensor. With handles provided on both sides for safety, the subjects were asked 

to stare straight ahead, keep their hands still by their sides, and maintain their balance 

for 30 seconds while the balance sensor recorded changes in their center of pressure. 

 We analyzed the plantar pressure data of 149 subjects to evaluate their balance 

ability, extracting important temporal and frequential features. The center of pressure 

(CoP), which indicates the position of the center of gravity on the plantar contact surface, 

reflects the body's balance state. We calculated 45 temporal features and 15 frequential 

features for CoP, including the mean velocity, amplitude, range of movement, and 

power spectral density at different frequencies. The center of gravity (CoG), which is 

defined as the geometric center of mass of all body parts, determines body balance 

together with CoP. We extracted the same sets of temporal and frequential features for 

CoG as for CoP. These features, allow us to make a preliminary distinction between the 

elderly people of different physical health statuses with risk levels 0,1,2,3 and 4, as 

shown in Figure 3. 



 
Figure 3. a. The center of pressure (CoP)-based risk classification and b. The center of gravity (CoG)-

based risk classification for the elderly with different physical health statuses with risk levels 0,1,2,3 and 

4. 

 

We simultaneously measured the maximum voluntary contraction (MVC) of GL 

muscle in 29 subjects as shown in Figure 4. Our hypothesis was that subjects with larger 

GL muscle MVC would perform better in the balance test, which in the context of our 

balance sensor would mean that the center of pressure, the center of gravity, and theta 

angle features extracted would be smaller during the experiment.   

In Figure 4., each row represents the extracted features over 30 seconds of the 

subject standing still and looking forward on the balance sensor, including the center of 

pressure, the center of gravity, and angle theta, totaling 58 features. The angle theta 

represents the angular tilt of the joints about the X and Y axes. We also derived 

corresponding temporal and frequential features for angle theta.   Each column 

represents three separate MVC measurements and their averages for GL muscle. Red 

represents correlation coefficients greater than 0, indicating a positive correlation 

between the two, while blue represents coefficients less than 0 indicating a negative 



correlation. Values closer to 1/-1 indicate a stronger correlation. Evidently, the majority 

of the results from the balance sensor show a negative correlation with GL muscle MVC, 

confirming our hypothesis that subjects with stronger GL muscles maintained better 

balance. 

 
Figure 4. Correlation between balance sensor data features and GL muscle MVC features. 

 

We also conducted experiments using the wearable muscle-mimetic robot in 

conjunction with a balance sensor. The subject stood on the balance sensor without 

wearing the robot and swung their upper limbs with a specific amplitude, placing the 

body in an unbalanced state. This action caused the GL muscles and other lower limb 

muscle groups to activate in order to maintain balance. The center of pressure (CoP) 

data for the entire 30-second measurement process is illustrated in Figure 5. 

Subsequently, the subject donned the wearable muscle-mimetic robot and stood on the 

balance sensor while swinging their upper limbs at the same frequency and amplitude 

as before. This triggered the robot's activation alongside the GL muscles and other lower 

limb muscle groups to maintain balance after experiencing an imbalance. The CoP data 

for this 30-second measurement process is also depicted in Figure 5. The CoP variance 

relative to the mean CoP decreased from 0.533 (without robot condition) to 0.096 

(wearing robot condition), showing promising results in improving balance when worn 

by subjects, both in active force front-back directions and passive left-right directions. 

However, for the healthy subject, the range of CoP did not exceed the yellow (average 

risk level 0,1) and red circles (average risk level 2,3,4). 



 
Figure 5. a. Experimental setup and deviation of CoP position from the mean CoP in the condition 

without the GL robot. b. Experimental setup and deviation of CoP position from the mean CoP in the 

condition with the GL robot. X and Y represent the left/right and front/back positions, respectively. 

The yellow circles indicate the average deviation of CoP for risk levels 0 and 1, while the red circles 

represent the average deviation of CoP for risk levels 2, 3, and 4. 

 

 

CONCLUSION 

 

Our study demonstrates the potential of utilizing an optical-based balance sensor 

and muscle-mimetic wearable robot for evaluating and improving balance in elderly 

individuals with various health conditions. Through the analyzing data from 149 

subjects, we extracted essential temporal and frequential features of the center of 

pressure (CoP), center of gravity (CoG), and theta angles, enabling us to classify balance 

ability and fall risk in elderly individuals. By categorizing the participants into different 

risk groups, targeted interventions and personalized assistance can be provided to 

improve balance and reduce the likelihood of falls. We selected 29 subjects to complete 

the GL muscle maximal voluntary contraction (MVC) test and analyzed the correlations 

between MVC results and various CoP parameters. Our hypothesis that subjects with 

larger GL muscle maximum voluntary contraction (MVC) would perform better in the 

balance test was confirmed through a correlation analysis between balance sensor 

features and GL muscle MVC features. The majority of the balance sensor results 

exhibited a negative correlation with GL muscle MVC, indicating that subjects with 

stronger GL muscles maintained better balance. 



Therefore, to compensate for the decline in the strength of the GL muscle, the 

muscle-mimetic wearable robot can be utilized as an assistive device. By mimicking 

mechanical properties and interpreting control signals from the human body, the 

wearable robot completes the process of muscle compensation, assisting in maintaining 

balance and stability by compensating for the weakened GL muscle. Integrating of the 

wearable muscle-mimetic robot with the balance sensor demonstrated promising results 

in enhancing balance. Comparative data from the subjects revealed a significant 

decrease from 0.533 (without robot condition) to 0.096 (wearing robot condition) in the 

variance of CoP relative to the mean CoP. This finding indicates that the wearable robot 

can effectively assist in maintaining balance, thus reducing the risk of falls and 

promoting overall postural stability. 

In conclusion, the optical-based balance sensor and muscle-mimetic wearable robot 

offer an effective approach for assessing and enhancing balance in elderly individuals 

with various health conditions. The study suggests that this type of robotic assistance 

could serve as a valuable intervention for individuals with weakened balance, ultimately 

mitigating the risk of falls and enhancing the overall quality of life for elderly people. 

Future research should focus on refining the design and control of the robot, as well as 

exploring the long-term and dynamic effects of such interventions on balance and fall 

prevention. 
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