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ABSTRACT

Golfers must hone the sequence of the golf swing for consistent and efficient results,
where a good golf shot is both precise and accurate. It takes countless hours of practice
to develop the skill, and methods such as video feedback and coaching serve as aids to
the process. However, few methods outside of visual observations exist to identify
factors in the swing that cause a poor shot. Most golf analysis equipment is expensive
and requires extensive setup time. Some systems only measure the physics of the ball
and are limited to the practice range, whereas wearable sensors for golf are limited to
specific motions such as the wrist. To address these challenges, a fabric-based, on-body
sensor was developed and investigated to assess biomechanical movements during the
swing. The wearable sensor, herein referred to as Motion Tape (MT), is a low-profile,
disposable, self-adhesive, skin-strain sensor formed by spray-coating piezoresistive
graphene nanocomposites directly onto kinesiology tape (K-tape). The objective of this
study is to use MT to identify key movements in the swing sequence at four body
locations: wrist, flexor carpi, anterior deltoid, and torso. First, MT sensors were
fabricated for testing. Second, a human subject test protocol recording the golf swing of
an experienced golfer was designed and conducted with participants wearing four MT
sensors at the aforementioned locations. Last, the test data were processed, and the
results showed that MT was able to identify unique movements during the swing. The
MT data was analyzed using machine learning algorithms to identify movement
abnormalities associated with poor swings. This allows for analysis of swing tempo for
direct feedback to the golfer for improved performance.
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INTRODUCTION

The golf swing is a dynamically complex movement that requires balance and
coordination from head to toe while controlling the trajectory of the club for ideal
distance and direction. The swing requires precise execution of numerous sequential
elements where minor deviations can result in a poor shot [1]. The golf industry is
heavily invested in equipment to measure both the metrics of the golf swing and the
result of the shot. For example, the Trackman portable launch monitor has become a
popular tool of assessment and feedback among elite golfers [2]. Although it provides
instant feedback, its limitation is that it only tracks swing metrics like clubhead speed,
which cannot provide the golfer with information on where the swing sequence went
wrong in the case of a bad shot. Optical motion capture (mocap), with golfers wearing
retroreflective markers over their entire body, can capture the full biomechanics of the
golf swing [3]. However, the need for multiple, expensive, high-performance cameras
means that mocap is only used by professional golfers and in specialized facilities.

To address these limitations, wearable sensors have been explored for measuring
the golf swing, where wrist movement is most tracked because of its high influence on
the outcome of the shot [4]. The wrist is a significant movement to capture as several
measures were found to clearly indicate a difference between expert and amateur golfers
[3]. These sensors are integrated as a watch worn on the wrist but are limited to this
area. Therefore, they cannot determine if swing abnormalities occur at other locations
such as the waist. To form a system that encompasses more body movements in the
swing, accelerometer loggers have been attached to the left wrist, solar plexus, right
knee, and head [5] and inertial measurement units (IMUs) have been explored to
measure movement at the golfer’s head, wrist, and waist [6]. Unfortunately, these
sensors can be bulky, uncomfortable, and require trained professionals for setup.

Therefore, the objective of this study is to demonstrate that the sensing streams from
a fabric-based, user-friendly, wearable sensor, which can accurately measure fine motor
movements, can be used to analyze key movements during the golf swing. The wearable
sensor, herein referred to as Motion Tape (MT), is a low-profile, disposable, self-
adhesive, skin-strain sensor formed by spray-coating piezoresistive graphene
nanocomposites directly onto kinesiology tape (K-tape). Individuals were recruited to
hit golf balls while wearing four MT sensors, specifically, on the wrist, flexor carpi,
anterior deltoid, and torso. The MT sensing streams from multiple golf swings were
used to train a machine learning algorithm. The algorithm was then used to identify
movement abnormalities that resulted in poor swings and bad shots.

EXPERIMENT DETAILS
Motion Tape Fabrication

The process of creating MT involves four steps: (1) ink preparation, (2) substrate
preparation, (3) graphene deposition, and (4) electrical contacts. First, the ink was
prepared by dispersing, by bath sonication, graphene nanosheets (GNS) in an ethyl
cellulose (EC) in ethyl alcohol (EtOH) solution. GNS used in this work was synthesized
using a water-assisted liquid-phase exfoliation process [7, 8, 9]. Second, the substrate
was prepared by sectioning off 6 cm segments of K-tape from Rock Tape®. The non-



Figufe 1. Motion Tape was affixed near the (a) anterior deltoid, (b) flexor carpi, (c) wrist, and (d) torso,
(e) which were connected to a portable sensing node that collected data during golf swing tests.

adhesive side of the fabric tape was covered by a mask with a 4x1 cm? rectangular
cutout to define the sensing region. Third, a Paasche airbrush was used to spray-coat
and deposit the GNS-EC ink onto K-Tape. Spray-coating was repeated three times
before a final layer was drop-casted to enhance film conductivity. Last, two-point probe
electrodes were formed on opposite ends of the film by spreading a thin strip of colloidal
silver paste before soldering thin multi-strand wires to each contact.

Human Participant Testing Protocol

An experiment that involved a participant hitting 52 golf shots in an indoor golf
simulator facility was designed and conducted. The human subject study was approved
by the University of California San Diego, Institutional Review Boards, Human
Research Protection Program, under Project No. 191806, and informed written consent
was obtained from all participants. First, four MT sensors were affixed at the anterior
deltoid, wrist, flexor carpi, and torso of the participant for capturing golf swing
movements (Figure 1). Second, all four MT were connected to a customized, portable,
wireless sensing node that recorded the electrical resistance of each channel at 60 Hz
and streamed the raw data to a wireless base station connected to a personal computer.

During each shot, MT sensing streams were recorded. In addition, the Foresight GC
Quad launch monitor tracked club head metrics and ball launch to estimate the distance
and trajectory of each shot. An additional shot metric that was estimated is offline
distance. Offline distance is defined as the left and right deviation from the target line.
In this experiment, a shot was considered good if the offline distance was less than 5 yd
(4.57 m). The subject was performed good and bad golf shots while being captured by
mocap; bad golf swings were performed intentionally by inducing excessive wrist
movement. A total of 18 good and 34 bad golf swings were recorded.

DATA PROCESSING

The proposed deep learning model for processing MT data was a deep convolutional
autoencoder (CAE), which was initially proposed by Kwak and Kim [10] for detecting
anomalies in multi-channel automobile signals. The CAE model consists of an encoder,
which extracts and compresses essential information and features from input signals to
form a representation of the input data. The model also has a decoder, which
reconstructs the input signals by converting the low dimensional representation formed
by the encoder [10]. The loss function of CAE is formulated to minimize the
discrepancy between the input and output data, which can be described as:
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where x; denotes the input data, and X, denotes the output obtained from the model of
the i observation among a total of N observations.

The channel-wise reconstruction error vector € containing the reconstruction errors
of a total number of K channels was calculated to represent the discrepancy between
each channel of the input data and the output data, which can be described as:

& = % ?:1(xt,k - x/t,\k)z (2)

where € = (g1, &,,++,&;) € RX denotes the channel-wise reconstruction error vector
that calculates the discrepancy between input data and the output of CAE over a time
window containing a total of 7 observations. To identify the abnormal data stream based
on the reconstruction error &, the Local Outlier Factor (LOF) was adopted in this study.
LOF identifies outliers by comparing the data distribution of reconstruction error of each
channel between normal data streams (i.e., correct or good movements) and abnormal
data streams (i.e., incorrect or bad movements) [11].

Dataset Construction

The normalized change in resistance (R,) of MT were calculated using Equation 3.

Ri—R
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where R; is the resistance of MT at each time step, and Ry is its baseline or nominal
resistance (i.e., when the participant was standing in a neutral position and relaxed). The
sensing streams for each golf swing were split into 0.3 s time windows (with 20 time
frames) with a 1 time frame stride; stride controls the number of time frames overlapped
for adjacent time windows. In this study, 70% of good golf swing datasets were used
for training, while 30% of good golf swings were used for validation. All the good and
bad golf swing datasets were employed for testing the CAE model.

Model Architecture and Hyperparameters

The architecture of the proposed CAE, as shown in Figure 2, was implemented and
adopted following a previous study on marksmanship training [12, 13]. It was shown
that using a deep neural network may lead to gradient vanishing. Therefore, a technique
called skip-connection was used to alleviate this issue by simply adding the feature map
of the current layer with that of the previous layer before passing the feature map to the
next layer. This not only prevented updates of the gradient from gradually becoming
negligible but also facilitated the search of the optimal set of parameters [14]. In
addition, the identical CAE model architecture was run 10 times to account for the
randomness of the adopted deep learning approach. Therefore, the result of the anomaly
signal detection was finalized by combining the predictions from 10 different CAE
models (but with identical architecture).
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Figure 2. (a) A “ResBlock (C)” layer consists of the dropout layer, PReLU layer, and two one-
dimension convolutional layers with C kernel. (b) The proposed CAE architecture consists of an
encoder and decoder that reconstructs the input signal.

RESULTS AND DISCUSSION
Analysis of Golf Swing Using Mocap

The golf swings of a subject were analyzed in an experimentally controlled
environment using both MT sensors and mocap. Representative MT time histories of
different phases of a golf swing are shown in Figures 3 and 4. The distinct phases of
the golf swing were identified by manually inspecting the subject’s movements from
mocap results. In Figures 3 and 4, it can be observed that the incorrect wrist
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Figure 3. Different phases of a golf swing were identified and overlaid with Motion Tape normalized
change in resistance time histories for an exemplary good golf swing.
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Figure 4. Different phases of a golf swing were identified and overlaid with Motion Tape normalized
change in resistance time histories for an exemplary bad golf swing .

movements could be successfully captured by MT. An abnormal peak normalized
resistance with a value of around 10 occurred during the bad golf swing. In addition,
the time intervals and the trend of the data streams between the red and green lines
also changed slightly. Although those features are not chosen for training the machine
learning model in this study, they may be useful candidate features for assessing the
quality of golf swings and detecting if undesirable muscle activity occurs during the
golf swing.

Fault Detection of Golf Swings using Machine Learning Algorithm

The effectiveness of the proposed CAE model was also evaluated using MT golf
swing datasets. As mentioned earlier, the quality of each golf swing was determined
based on the golf simulator data, specifically, whether the offline distance was less
or greater than 5 yd (4.57 m). Figure 5 shows exemplary classification results made
by the proposed CAE model. For the bad golf swing shown in Figure 5, the proposed
CAE model successfully identified anomalies occurring during the golf swing. The
subject also confirmed that the wrist movement was anomalous for this specific golf
swing, which was correctly detected by the proposed CAE model. However, it was
not clear what caused those anomalies even if they were identified. Therefore, an
explainable anomaly detection algorithm may be required to address this issue to
provide more values in the scenario when a professional golf trainer is not available.
Apart from the exemplary results, the overall performance of the proposed CAE
model is summarized in Table I, which shows the reconstruction error of each muscle
group. It can be observed that Table I demonstrates the effectiveness of the proposed
CAE model.
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Figure 5. The proposed CAE model successfully identified anomalies of an exemplary bad golf swing.

TABLE I. OVERALL RECONSTRUCTION ERROR

Muscle Group Good Shots Bad Shots
Mean Standard Mean Standard
Deviation Deviation
Wrist 8.851 x 107 5.181 x 10* 4237 x 10* 5.300 x 1073
Anterior Deltoid 8.238 x 107 4.967 x 10* 2.330 x 10* 1.700 x 1073
Flexor Carpi 6.325 x 107 1.979 x 10* 2.996 x 10* 2.600 x 1073
Torso 6.995 x 107 1.736 x 10* 3.292 x 10* 2.600 x 1073
CONCLUSIONS

The objective of this study was to identify key movements in the golf swing
sequence at four body locations (i.e., wrist, flexor carpi, anterior deltoid, and torso)
using Motion Tape elastic fabric skin-strain sensors. Analysis of the MT data using a
machine learning technique identified abnormalities in poor swings and determined the
locations at which the key swing movements are captured most effectively. It was found
that three out of four locations were capable of capturing the golf swing sequence
effectively. The preliminary results presented in this work validated that MT and the
machine learning algorithm, as a system, could provide direct feedback to golfers for
improved training and performance. Future work is planned to identify an explainable
anomaly detection algorithm to address the issue of determining anomaly causations
with the goal of providing more value in golf performance and training.
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