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ABSTRACT 
 

Golfers must hone the sequence of the golf swing for consistent and efficient results, 
where a good golf shot is both precise and accurate. It takes countless hours of practice 
to develop the skill, and methods such as video feedback and coaching serve as aids to 
the process. However, few methods outside of visual observations exist to identify 
factors in the swing that cause a poor shot. Most golf analysis equipment is expensive 
and requires extensive setup time. Some systems only measure the physics of the ball 
and are limited to the practice range, whereas wearable sensors for golf are limited to 
specific motions such as the wrist. To address these challenges, a fabric-based, on-body 
sensor was developed and investigated to assess biomechanical movements during the 
swing. The wearable sensor, herein referred to as Motion Tape (MT), is a low-profile, 
disposable, self-adhesive, skin-strain sensor formed by spray-coating piezoresistive 
graphene nanocomposites directly onto kinesiology tape (K-tape). The objective of this 
study is to use MT to identify key movements in the swing sequence at four body 
locations: wrist, flexor carpi, anterior deltoid, and torso. First, MT sensors were 
fabricated for testing. Second, a human subject test protocol recording the golf swing of 
an experienced golfer was designed and conducted with participants wearing four MT 
sensors at the aforementioned locations. Last, the test data were processed, and the 
results showed that MT was able to identify unique movements during the swing. The 
MT data was analyzed using machine learning algorithms to identify movement 
abnormalities associated with poor swings. This allows for analysis of swing tempo for 
direct feedback to the golfer for improved performance. 
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INTRODUCTION 
 
The golf swing is a dynamically complex movement that requires balance and 

coordination from head to toe while controlling the trajectory of the club for ideal 
distance and direction. The swing requires precise execution of numerous sequential 
elements where minor deviations can result in a poor shot [1]. The golf industry is 
heavily invested in equipment to measure both the metrics of the golf swing and the 
result of the shot. For example, the Trackman portable launch monitor has become a 
popular tool of assessment and feedback among elite golfers [2]. Although it provides 
instant feedback, its limitation is that it only tracks swing metrics like clubhead speed, 
which cannot provide the golfer with information on where the swing sequence went 
wrong in the case of a bad shot. Optical motion capture (mocap), with golfers wearing 
retroreflective markers over their entire body, can capture the full biomechanics of the 
golf swing [3]. However, the need for multiple, expensive, high-performance cameras 
means that mocap is only used by professional golfers and in specialized facilities.  

To address these limitations, wearable sensors have been explored for measuring 
the golf swing, where wrist movement is most tracked because of its high influence on 
the outcome of the shot [4]. The wrist is a significant movement to capture as several 
measures were found to clearly indicate a difference between expert and amateur golfers 
[3]. These sensors are integrated as a watch worn on the wrist but are limited to this 
area. Therefore, they cannot determine if swing abnormalities occur at other locations 
such as the waist. To form a system that encompasses more body movements in the 
swing, accelerometer loggers have been attached to the left wrist, solar plexus, right 
knee, and head [5] and inertial measurement units (IMUs) have been explored to 
measure movement at the golfer’s head, wrist, and waist [6]. Unfortunately, these 
sensors can be bulky, uncomfortable, and require trained professionals for setup.  

Therefore, the objective of this study is to demonstrate that the sensing streams from 
a fabric-based, user-friendly, wearable sensor, which can accurately measure fine motor 
movements, can be used to analyze key movements during the golf swing. The wearable 
sensor, herein referred to as Motion Tape (MT), is a low-profile, disposable, self-
adhesive, skin-strain sensor formed by spray-coating piezoresistive graphene 
nanocomposites directly onto kinesiology tape (K-tape). Individuals were recruited to 
hit golf balls while wearing four MT sensors, specifically, on the wrist, flexor carpi, 
anterior deltoid, and torso. The MT sensing streams from multiple golf swings were 
used to train a machine learning algorithm. The algorithm was then used to identify 
movement abnormalities that resulted in poor swings and bad shots.  

 
 
EXPERIMENT DETAILS 
 
Motion Tape Fabrication 
 

The process of creating MT involves four steps: (1) ink preparation, (2) substrate 
preparation, (3) graphene deposition, and (4) electrical contacts. First, the ink was 
prepared by dispersing, by bath sonication, graphene nanosheets (GNS) in an ethyl 
cellulose (EC) in ethyl alcohol (EtOH) solution. GNS used in this work was synthesized 
using a water-assisted liquid-phase exfoliation process [7, 8, 9]. Second, the substrate 
was prepared by sectioning off 6 cm segments of K-tape from Rock Tape®. The non-



 
 

adhesive side of the fabric tape was covered by a mask with a 4×1 cm2 rectangular 
cutout to define the sensing region. Third, a Paasche airbrush was used to spray-coat 
and deposit the GNS-EC ink onto K-Tape. Spray-coating was repeated three times 
before a final layer was drop-casted to enhance film conductivity. Last, two-point probe 
electrodes were formed on opposite ends of the film by spreading a thin strip of colloidal 
silver paste before soldering thin multi-strand wires to each contact.  

 
Human Participant Testing Protocol 
 

An experiment that involved a participant hitting 52 golf shots in an indoor golf 
simulator facility was designed and conducted. The human subject study was approved 
by the University of California San Diego, Institutional Review Boards, Human 
Research Protection Program, under Project No. 191806, and informed written consent 
was obtained from all participants. First, four MT sensors were affixed at the anterior 
deltoid, wrist, flexor carpi, and torso of the participant for capturing golf swing 
movements (Figure 1). Second, all four MT were connected to a customized, portable, 
wireless sensing node that recorded the electrical resistance of each channel at 60 Hz 
and streamed the raw data to a wireless base station connected to a personal computer.  

During each shot, MT sensing streams were recorded. In addition, the Foresight GC 
Quad launch monitor tracked club head metrics and ball launch to estimate the distance 
and trajectory of each shot. An additional shot metric that was estimated is offline 
distance. Offline distance is defined as the left and right deviation from the target line. 
In this experiment, a shot was considered good if the offline distance was less than 5 yd 
(4.57 m). The subject was performed good and bad golf shots while being captured by 
mocap; bad golf swings were performed intentionally by inducing excessive wrist 
movement. A total of 18 good and 34 bad golf swings were recorded. 
 
 
DATA PROCESSING 
 

The proposed deep learning model for processing MT data was a deep convolutional 
autoencoder (CAE), which was initially proposed by Kwak and Kim [10] for detecting 
anomalies in multi-channel automobile signals. The CAE model consists of an encoder, 
which extracts and compresses essential information and features from input signals to 
form a representation of the input data. The model also has a decoder, which 
reconstructs the input signals by converting the low dimensional representation formed 
by the encoder [10]. The loss function of CAE is formulated to minimize the 
discrepancy between the input and output data, which can be described as: 
 

 
Figure 1. Motion Tape was affixed near the (a) anterior deltoid, (b) flexor carpi, (c) wrist, and (d) torso, 

(e) which were connected to a portable sensing node that collected data during golf swing tests. 
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where 𝑥𝑥𝑖𝑖 denotes the input data, and 𝑥𝑥𝚤𝚤�  denotes the output obtained from the model of 
the 𝑖𝑖th observation among a total of 𝑁𝑁 observations.  

The channel-wise reconstruction error vector 𝜀𝜀 containing the reconstruction errors 
of a total number of 𝐾𝐾 channels was calculated to represent the discrepancy between 
each channel of the input data and the output data, which can be described as: 
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where 𝜀𝜀 = (𝜀𝜀1, 𝜀𝜀2,⋯ , 𝜀𝜀𝑘𝑘) ∈ ℝ𝐾𝐾  denotes the channel-wise reconstruction error vector 
that calculates the discrepancy between input data and the output of CAE over a time 
window containing a total of T observations. To identify the abnormal data stream based 
on the reconstruction error 𝜀𝜀, the Local Outlier Factor (LOF) was adopted in this study. 
LOF identifies outliers by comparing the data distribution of reconstruction error of each 
channel between normal data streams (i.e., correct or good movements) and abnormal 
data streams (i.e., incorrect or bad movements) [11]. 
 
Dataset Construction 
 

The normalized change in resistance (Rn) of MT were calculated using Equation 3.  
 

 𝑅𝑅𝑛𝑛 = 𝑅𝑅𝑖𝑖−𝑅𝑅0
𝑅𝑅0

 (3) 
 

where 𝑅𝑅𝑖𝑖 is the resistance of MT at each time step, and 𝑅𝑅0 is its baseline or nominal 
resistance (i.e., when the participant was standing in a neutral position and relaxed). The 
sensing streams for each golf swing were split into 0.3 s time windows (with 20 time 
frames) with a 1 time frame stride; stride controls the number of time frames overlapped 
for adjacent time windows. In this study, 70% of good golf swing datasets were used 
for training, while 30% of good golf swings were used for validation. All the good and 
bad golf swing datasets were employed for testing the CAE model.  
 
Model Architecture and Hyperparameters 
 

The architecture of the proposed CAE, as shown in Figure 2, was implemented and 
adopted following a previous study on marksmanship training [12, 13]. It was shown 
that using a deep neural network may lead to gradient vanishing. Therefore, a technique 
called skip-connection was used to alleviate this issue by simply adding the feature map 
of the current layer with that of the previous layer before passing the feature map to the 
next layer. This not only prevented updates of the gradient from gradually becoming 
negligible but also facilitated the search of the optimal set of parameters [14]. In 
addition, the identical CAE model architecture was run 10 times to account for the 
randomness of the adopted deep learning approach. Therefore, the result of the anomaly 
signal detection was finalized by combining the predictions from 10 different CAE 
models (but with identical architecture). 



 
 

 
RESULTS AND DISCUSSION 
 
Analysis of Golf Swing Using Mocap 
 

The golf swings of a subject were analyzed in an experimentally controlled 
environment using both MT sensors and mocap. Representative MT time histories of 
different phases of a golf swing are shown in Figures 3 and 4. The distinct phases of 
the golf swing were identified by manually inspecting the subject’s movements from 
mocap results. In Figures 3 and 4, it can be observed that the incorrect wrist 

  
(a) (b) 

Figure 2. (a) A “ResBlock (C)” layer consists of the dropout layer, PReLU layer, and two one-
dimension convolutional layers with C kernel. (b) The proposed CAE architecture consists of an 

encoder and decoder that reconstructs the input signal. 

 
Figure 3. Different phases of a golf swing were identified and overlaid with Motion Tape normalized 

change in resistance time histories for an exemplary good golf swing. 



 
 

movements could be successfully captured by MT. An abnormal peak normalized 
resistance with a value of around 10 occurred during the bad golf swing. In addition, 
the time intervals and the trend of the data streams between the red and green lines 
also changed slightly. Although those features are not chosen for training the machine 
learning model in this study, they may be useful candidate features for assessing the 
quality of golf swings and detecting if undesirable muscle activity occurs during the 
golf swing. 
 
Fault Detection of Golf Swings using Machine Learning Algorithm 
 

The effectiveness of the proposed CAE model was also evaluated using MT golf 
swing datasets. As mentioned earlier, the quality of each golf swing was determined 
based on the golf simulator data, specifically, whether the offline distance was less 
or greater than 5 yd (4.57 m). Figure 5 shows exemplary classification results made 
by the proposed CAE model. For the bad golf swing shown in Figure 5, the proposed 
CAE model successfully identified anomalies occurring during the golf swing. The 
subject also confirmed that the wrist movement was anomalous for this specific golf 
swing, which was correctly detected by the proposed CAE model. However, it was 
not clear what caused those anomalies even if they were identified. Therefore, an 
explainable anomaly detection algorithm may be required to address this issue to 
provide more values in the scenario when a professional golf trainer is not available. 
Apart from the exemplary results, the overall performance of the proposed CAE 
model is summarized in Table I, which shows the reconstruction error of each muscle 
group. It can be observed that Table I demonstrates the effectiveness of the proposed 
CAE model. 

 

 

Figure 4. Different phases of a golf swing were identified and overlaid with Motion Tape normalized 
change in resistance time histories for an exemplary bad golf swing . 



 
 

CONCLUSIONS 
 

The objective of this study was to identify key movements in the golf swing 
sequence at four body locations (i.e., wrist, flexor carpi, anterior deltoid, and torso) 
using Motion Tape elastic fabric skin-strain sensors. Analysis of the MT data using a 
machine learning technique identified abnormalities in poor swings and determined the 
locations at which the key swing movements are captured most effectively. It was found 
that three out of four locations were capable of capturing the golf swing sequence 
effectively. The preliminary results presented in this work validated that MT and the 
machine learning algorithm, as a system, could provide direct feedback to golfers for 
improved training and performance. Future work is planned to identify an explainable 
anomaly detection algorithm to address the issue of determining anomaly causations 
with the goal of providing more value in golf performance and training.  
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Figure 5. The proposed CAE model successfully identified anomalies of an exemplary bad golf swing. 
 

TABLE I. OVERALL RECONSTRUCTION ERROR 
Muscle Group Good Shots Bad Shots 

 Mean Standard 
Deviation 

Mean Standard 
Deviation 

Wrist 8.851 × 10-5 5.181 × 10-4 4.237 × 10-4 5.300 × 10-3 
Anterior Deltoid 8.238 × 10-5 4.967 × 10-4 2.330 × 10-4 1.700 × 10-3 

Flexor Carpi 6.325 × 10-5 1.979 × 10-4 2.996 × 10-4 2.600 × 10-3 
Torso 6.995 × 10-5 1.736 × 10-4 3.292 × 10-4 2.600 × 10-3 
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