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ABSTRACT 
Structural health monitoring (SHM) is crucial to the maintenance and daily 

operation of civil infrastructures. Railway system, which plays an important role in 
modern society, relies heavily on robust monitoring systems to give timely warnings of 
early-stage defects that potentially could result in the consequences of major traffic 
incidents, such as derailments. Guided wave testing (GWT) methods have been 
introduced into the rail track monitoring, featuring long-distance monitoring reliability, 
high sensitivity, and excellent efficiency. In recent yea rs, the deployment of optical 
fiber-based GWT on railway system has prevailed traditional piezoelectric sensing- 
based schemes, due to its reliable performance especially under high electromagnetic 
interference (EMI) environments. In this paper, experimental studies are conducted, 
where fiber Bragg grating (FBG) sensors are utilized to receive ultrasonic guided waves 
(UGWs) on railway tracks, induced by a lead zirconate titanate (PZT) sensor, to detect 
defects. A narrow-band laser is induced to conduct edge filter demodulation of 
ultrasonic FBGs, with the sampling frequency of 10 MHz. A nonlinear autoregressive 
neural network with exogenous inputs (NARX) is trained using the acquired UGW 
signals and is utilized to evaluate rail track condition by extracting damage sensitive 
features (DSFs) based on the probabilistic density function (PDF) of the prediction error. 
First, a DSF baseline is obtained using the UGW data acquired from an intact rail track; 
then, for an unknown rail condition, the signals are processed by the trained NARX 
model to calculate DSFs; by comparing the calculated DSFs with the baseline, the rail 
condition can be evaluated. In this research, various UGW excitation frequencies are 
deployed, and for each frequency band an individual NARX model is trained. The 
prediction results show that the proposed method is highly sensitive to rail cracks, with 
an obvious increase in DSF values when an artificial crack is placed, which denotes the 
promising application of this method into SHM for mass rail transit systems. 
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INTRODUCTION 
 

The maintenance of modern civil infrastructures has been extensively researched 
through the past decades, ensuring that major incidents can be prevented. It has been 
repeatedly reported that most of the railway failures are the consequence of railway 
track damages, such as fatigue cracks and weld defects. Therefore, a reliable SHM 
system designed to detect rail track damages is required to rule out potential risks of 
failure. 

Guided wave testing (GWT) is an important branch of non-destructive evaluation 
(NDE) technique [1], which has been deployed to damage detection of railway tracks. 
Such method has attained growing attention, due to its rapid and accurate inspection 
performance, non-destructive characteristic, and high sensitivity to minor damages [2]. 
In a normal procedure of the GWT-based damage detection process, ultrasonic guided 
waves (UGWs) are actively induced via either contact or non-contact sensors and are 
received by transducers. This testing procedure can be repeatedly carried out, depending 
on the specifically designated monitoring period, generally with the advantages of long 
range, flexible distance and high reliability and durability, compared to traditional bulk 
wave testing (BWT) methods. More importantly, high-frequency UGW is damage-
sensitive when it comes to railway defects, such as fatigue cracks [3]. However, the 
quality of the UGW signals can be compromised due to the electromagnetic interference 
(EMI) on railway sites. To this regard, optical acoustic sensing has been introduced to 
the monitoring of railway tracks considering its non-electric characteristic and high 
endurance in ambient EMI [4][5]. Compared to traditional piezoelectric material-made 
sensors, fiber Bragg grating (FBG) sensors are not only capable of performing in harsh 
railway environments, but also are considered economically efficient because of the low 
costs for production and maintenance of optical fibers [6]. 

The propagation of UGWs in railway tracks has been researched. It has been 
concluded in literature that the complex boundary conditions of the rail track result in 
highly non-linear signals due to multiple reflections and scatterings [3][5][7][8]. 
Therefore, instead of analyzing the time-domain series which is a common solution for 
Lamb wave-based damage detection [9], it is generally difficult to extract useful 
information from the raw signals collected from a railway track. Consequently, energy-
based damage index is proposed, representing the possible energy loss when the UGWs 
encounter a barrier, e.g., a crack or a weld. Apart from that, time and frequency domain 
parameters are also extracted to study the propagation of UGWs [10][11]. In recent 
years, with the growing trend of using efficient machine learning algorithms to extract 
features and process signals, various neural network structures have been proposed to 
process the time series. The autoregressive (AR) model and autoregressive model with 
exogenous inputs (ARX) are commonly used when processing the structural dynamic 
responses, such as accelerations and displacements, in SHM [12][13]. To deploy time-
series-based models into processing UGW signals that propagate in rail tracks where 
nonlinear boundary conditions are considered, it is intuitive to apply a nonlinear model 
with more robust fitting performance. Nonlinear autoregressive model with exogenous 
inputs (NARX), proved to be capable of performing system identification in various 
fields [14], is deployed in this paper. The multi-input characteristics of the NARX 
makes it a powerful tool when applied to processing multi-channel signals of a sensor 
network with complex nonlinear relations. 



In this paper, a NARX-based damage detection framework is proposed to conduct 
NDE on rail tracks using FBG. A probabilistic damage sensitive feature (DSF) is also 
developed for damage diagnosis. Experimental studies are conducted to verify the 
feasibility of the proposed method, where an artificial crack is created on the rail web. 
Then, NARX models are constructed and trained on the UGW signals collected, with 
varying frequency bands. The DSFs are calculated for both the intact and defected rail 
conditions. In the following contents, the damage detection methodology and the 
experimental setup are introduced in Section 2 and 3, respectively. Last, the results of 
the proposed NARX-based damage detection method are shown in Section 4, where 
further discussions are also included. 
 
 
NARX-BASED DAMAGE DETECTION 
 
NARX Neural Networks 
 

For a typical multi-input single-output (MISO) system, the autoregression model 𝐹𝐹 
can be formatted as, 
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where 𝑦𝑦 and 𝑦𝑦� are the original and predicted targets, respectively; 𝑥𝑥 denotes the input 
time-series; 𝑑𝑑𝑥𝑥 and 𝑑𝑑𝑦𝑦 refer to the time delays of the exogenous input and the target; 
𝑊𝑊ℎ and 𝑏𝑏ℎ are weights and the bias matrixes of the hidden layers. The dimension of 
the exogenous matrix 𝑥𝑥 is determined by the number of inputs and the length of the 
signals. With 𝐹𝐹 representing the nonlinear function, 𝑓𝑓 being the activation function of 
the neurol nodes, usually being sigmoid or SoftMax, Equation 1 can be regarded as the 
basic format of a NARX model. 
 
Damage Sensitive Feature 
 

After constructing a robust nonlinear regressor, it is vital that suitable damage 
sensitive features (DSFs) are extracted based on the regression results [15]. In this paper, 
a probability density function (PDF) based DSF format is adopted to represent the 
damage status of the rail tracks. 

It is assumed that the prediction error of a NARX neural network should approximate 
to a Gaussian distribution. Therefore, the following equation can be obtained, 

𝐺𝐺(𝑒𝑒) =
1

𝜎𝜎√2𝜋𝜋
exp �−

(𝑒𝑒 − 𝜇𝜇)2

2𝜎𝜎2
� (2) 

where 𝑒𝑒 denotes the prediction error vector of the NARX; 𝜇𝜇 and 𝜎𝜎 are the mean value 
and the standard deviation of the distribution. After obtaining a baseline distribution 
𝐺𝐺𝑏𝑏(𝑒𝑒𝑏𝑏) through the NARX trained with the datasets collected whilst the rail track is 
under healthy condition, the prediction error distribution of the data of an unknown 
condition 𝐺𝐺𝑢𝑢(𝑒𝑒𝑢𝑢)  is utilized for comparison, to determine whether the rail track 
condition is close to that of the baseline condition. The DSF deployed in this paper is 
formatted via the following equation, 



 
Figure 1. Extracting damage-sensitive features from a typical PDF. 
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where 𝑝𝑝𝑏𝑏 , 𝑝𝑝𝑢𝑢  are the peak values of the PDFs of the baseline and the unknown 
conditions, respectively. To thoroughly demonstrate the concept of the Equation 3, a 
schematic is given in Figure 1 where two PDF curves are drawn to show the features 
extraction process. Equation 3 can accurately describe the difference between the PDFs 
of the baseline and an unknown condition. 
 
 
EXPERIMENTAL SETUP 
 

The schematic of the experimental setup is shown in Figure 2. The computer-based 
controlling instrument (PXI-5412, produced by National Instruments, Austin, TX, USA) 
is composed of 2 main parts, an arbitrary generator, and a digital oscilloscope 
respectively. The electric signals generated are transmitted to the power amplifier 
(HVA-400-A, produced by Ciprian, Grenoble, France). The UGWs are induced using 
a lead zirconate titanate (PZT) based sensor. When transmitting a 5-cycle sinusoidal 
tone voltage pulses modulated by a Hanning Window into the PZT, the material vibrates 
accordingly. 
 

 
Figure 2. Schematic of the experimental setup. 
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Figure 3. UGW transducing configurations and rail conditions considered. 

 
 

The demodulation of the FBG is based on edge filter technique. A narrow-bandwidth 
light with a central frequency range that meets the 3-dB point of an FBG is emitted from 
a tunable laser source (TLB-6700, produced by Newport, Irvine, CA, USA). The grating 
length of the FBG is 10 mm and the Bragg wavelength is 1560 nm in this case. The 
grating area is glued to the rail web via adhesives. The reflected light is converted into 
electrical signals through a balanced photodetector (2117-FC, produced by Newport, 
Irvine, CA, USA) and then the signals are recorded by the computer-based controlling 
instrument. The UGW induced by the PZT actuator propagates through the rail web. An 
artificial crack with the depth of 2 mm is placed (Figure 3). It is assumed that this crack 
would result in multiple scattering and reflections near the rail-crack interface. The 
baseline condition is firstly considered, where there are no defects located along the rail 
web. Then the dataset for testing is composed of 2 different scenarios: intact and crack 
conditions. It is worth noting that the test set is not used in the training process. 

A total of 3 FBGs are installed onto the rail web surface, which are simultaneously 
demodulated in this experiment. Time-domain samples for all FBGs are presented in 
Figure 4. To avoid the error brought by the difference of FBGs deployed, the amplitude 
for each time when UGW signals are sampled, is normalized into the range of ±1. To 
construct a robust NARX model, both the target and exogenous inputs are required. 
Therefore, to this regard, the signals acquired by the middle FBG is determined as the 
target while the other 2 FBGs serve as the exogenous inputs to the NARX model. 
 
 

  
(a) (b) 

Figure 4. Sampled UGW signals sampled under the excitation frequency of 250 kHz in (a) Intact 
condition and (b) Crack condition. 
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RESULTS AND DISCUSSIONS 
 

Instead of feeding the NARX model with the raw UGW data, Hilbert envelope is 
calculated first, as demonstrated in the following equation, 
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𝑎𝑎(𝑡𝑡)𝑒𝑒−𝑗𝑗2𝜋𝜋𝑓𝑓𝑓𝑓 

∞

𝑡𝑡

 (4) 

where 𝑓𝑓𝑠𝑠  denotes the sampling frequency and 𝑎𝑎(𝑡𝑡)  represents the instantaneous 
amplitude of the exponential formatted Hilbert transform of analytical signals. Then, 
the signal amplitudes are normalized to fit the range of 0 to 1. The actual and predicted 
Hilbert envelopes by NARX are presented in Figure 5. It can be clearly observed that 
better prediction results are achieved for intact condition. 

To quantify the error distributions for both cases, the PDF histograms are shown in 
Figure 6. Compared to the PDF distribution of the crack condition, the error distribution 
for the intact condition clearly lies within the range of the baseline PDF distribution. 
With lower level of discreteness of the prediction error, the railway condition is more 
likely to be intact. Obvious peak shift and abnormal standard deviation can be intuitively 
observed in Figure 6(b), which proves that it is the existence of the artificial crack that 
contributes to the abnormal distribution of the NARX prediction error.  
 
 

  
(a) (b) 

Figure 5. Predictions of the NARX model with the UGW frequency of 250 kHz. (a) Intact; (b) Crack. 
 
 

  
(a) (b) 

Figure 6. PDFs of the prediction errors of (a) Intact condition and (b) Crack condition. 
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TABLE I. DAMAGE DETECTION RESULTS. 
UGW 

frequency (kHz) 
NARX 

training MSE 
DSF 

thresholds 
DSFs measured Deviations (%) 

Intact Crack Intact Crack 
150 1.93×10-5 1.45 1.34 4.98 -7.59 243.45 
200 4.52×10-5 4.01 2.01 4.65 -49.9 15.96 
250 3.91×10-5 5.17 1.25 7.88 -75.8 52.42 
300 5.56×10-5 2.23 1.03 2.81 -53.81 26.01 
350 6.97×10-5 1.24 1.20 1.76 -0.03 41.9 

 
 
Further validation is conducted in this paper, using various UGW excitation 

frequencies to detect the artificial crack, and the DSFs are calculated respectively. The 
damage detection results are shown in Table 1 below. For each UGW frequency, an 
individual NARX model is trained using the corresponding signals collected, and the 
training mean square error (MSE) values are quite low, indicating the excellent 
nonlinear fitting performance of NARX. The DSF thresholds are set based on the 
training results, using the average training error distribution. Then, the DSFs for both 
intact and crack conditions are calculated for comparison. The last 2 columns of the 
table show DSF deviations from the set thresholds are also presented in Table 1, where 
positive values denote that the prediction error distribution is more dispersed. For the 
intact condition, the DSFs for all UGW frequencies are lower than the thresholds. 
Whereas, for the crack condition, the DSFs are all significantly higher than the set 
thresholds. Therefore, it can be concluded that the chosen DSF can accurately represent 
the potential damaged status of the rail track. 
 
 
CONCLUSIONS 

 
In this paper, an FBG-based damage detection approach for railway tracks is 

proposed in conjunction with NARX neural networks. The DSF is composed of the key 
parameters extracted from the prediction error distribution of NARX models, to reveal 
the rail health status. For the experimental study in this paper, a defected railway track 
with an artificial crack with the width of 2 mm is configured. A hybrid sensing system 
composed of a PZT actuator and 3 FBG ultrasonic transducers is installed on the railway 
track. UGW signals are acquired and fed to the NARX model. The prediction results 
are presented, and the error distribution histograms are drawn to show the peak shifts 
and the deviation difference between the intact and crack rail conditions. DSFs are 
calculated with the excitation frequencies ranging from 150 kHz to 350 kHz. The 
damage detection results indicate that the proposed method can accurately detect the 
artificial crack on rail web. This NARX-based damage detection method is highly 
robust and has the potential to be massively utilized on railway systems. 
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