
ABSTRACT 

The efficient and accurate modeling of ultrasonic guided waves (UGWs) can be a 
very effective tool to optimize UGWs inspections and enable defect characterization 
when performing structural health monitoring (SHM). Among the several strategies, hy- 
brid methods provide the capability of representing accurately the hosting structure and 
defect configurations, while leveraging the decreased computational costs of reduced- 
order and/or semi-analytical methods. 

In this work, the Global-Local method is used to simulate UGW propagation in com- 
posite plates with defects, to study the effect of the incident mode interaction with the 
scatterer and its features (size, location, local zone relation). To do so, the evolution of 
the method is presented to account for the inclusion of evanescent modes and to accom- 
modate the forced solution framework. In the first improvement, the role of evanescent 
modes will be discussed with respect to accuracy and computational cost considera- 
tions, providing guidelines for effective UGW modeling in composite materials. In the 
second upgrade, the 2D time-space response to different spatial and temporal sources 
is observed and analyzed in terms of its spectral content, to differentiate pristine and 
defective conditions, in composite materials with increasing defect severity. These im- 
provements in the numerical framework of the Global-Local approach are significant to 
enable quantitative SHM and prognostics by accurate and efficient predictions of UGW 
scattered responses, and to advance defect characterization by UGWs by analyses of 
UGW data. 

INTRODUCTION 

In recent years, ultrasonic guided waves (UGWs) have been widely used in Non- 
destructive Evaluation (NDE) and Structural Health Monitoring (SHM) fields. Com- 
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pared to traditional ultrasonic wave testing, UGWs offer large-area inspection and deep
penetration. Analytical methods to calculate guided wave propagation solutions have
been developed and applied to multi-layered structures, e.g. the global matrix or transfer
matrix method [1] [2]. However, purely theoretical solutions are limited to simple ge-
ometries and/or defect cases. For more general applications, several fully numerical or
hybrid methods have been employed to model UGWs propagation.

Although finite element methods (FEM) are still the most widely used numerical
strategy for solving problems of wave propagation, the utilization of full FE discretiza-
tion can be computationally demanding and inefficient, particularly for simulating the
inspection of large waveguides and scattering over broad or multiple frequency ranges.
On the contrary, hybrid methods offer an efficient and accurate compromise, since they
combine known analytical solutions to describe the wave propagation in the global struc-
ture and numerical solutions to efficiently simulate UGWs interaction with discontinu-
ities within the local region. Among the hybrid methods, the Global-Local (GL) method,
a hybrid Semi-analytical Finite Element (SAFE)-FE method has been proposed [3] and
developed for quantitative NDE in 2D [4] and 3D [5] multilayered structures with de-
fects.

Furthermore, the existence of propagating and non-propagating modes adds to the
complexity of UGW scattering. This aspect is especially significant when the con-
tribution of near-field effects, in the vicinity of a defect or geometrical discontinuity,
cannot be disregarded. SAFE methods have been used to model wave propagation in
damped and undamped waveguides of isotropic and composite materials of arbitrary
cross-section, including analysis of evanescent modes [6]. A hybrid Wave Finite El-
ement (WFE)/FE method was used to study the effect of defect size on UGWs scat-
tering by a local defect in the structural waveguide, including evanescent modes and a
forced formulation to compute time-domain scattered waveform [7]. In this work, the
GL method is used to study the role of evanescent modes in the accurate modeling of
UGW propagation in isotropic and composite plate waveguides, with respect to features
of the defect in relation to the local zone.

Despite significant progress in computer engineering, the primary constraint of such
algorithms lies in their computational expenses. The authors are endeavoring to reduce
the impact of the numerical solution. A code parallelization has been implemented, and
results in terms of computational gain and speedup are presented in [8]. Moreover, the
formulation has been extended with subroutines that enable forced response analysis
[8]. This formulation enables to compute the transient response resulting from UGW
scattering of an incident wave with any discontinuity. The response can be extracted
in a pitch-catch mode and across a wide frequency range to allow for UGW virtual
inspections and analyses.

THEORETICAL FORMULATION

Let us consider the general 2D scattering problem shown in Figure 1. The GL method
formulates the UGW propagation problem by separating the complex waveguide into
two regions. A detailed formulation can be found in [4]. An incident time harmonic
guided wave excited in the global region travels along the propagation direction and is



Figure 1. Geometrical representation of the scattering of an incident wave in reflected and transmitted
waves from a local region, with indication of the adopted discretization strategies in each region of the
Global-Local approach.

scattered into reflected and transmitted waves, after interacting with the discontinuity
within the local region.

Defining the vector U g for the nodal displacements, Kg for the stiffness matrix, M g

for the mass matrix, and F g for the force vector obtained in the global region, the dy-
namic undamped equilibrium equation is obtained as:

(Kg − ω2M g)U g = F g (1)

where in the case of an unforced solution, the right side of Eq. 1 is 0. This consti-
tutes a generalized eigenvalue problem where wavenumbers ξ and wavemodes Φ can
be found in terms of eigenvalues and eigenvectors. The eigenvalues occur as pairs of
real numbers (±ξRe), representing propagating waves in the ±x directions, as pairs of
complex conjugate numbers (±ξRe ± iξIm), representing evanescent waves decaying in
the ±x directions, or as pairs of purely imaginary numbers (±iξIm), representing the
nonoscillating evanescent waves in the ±x directions.

Following [9] and [10], the dispersion curves are built calculating the associated
phase (Cp) and group (Cg) velocities, including attenuation and energy velocity.

Attenuation and energy velocity are obtained as follows:

att = ξIm (2)
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where Γ is the cross-sectional area, P is the Poynting vector (real part only), n is the
propagation direction unit vector, etot is the total energy density, T is the period.

The energy is calculated as Eq. 4, for each scattered mode.
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where Aj are the scattering coefficients, and F j and Φj are the consistent forces and
corresponding mode shapes for mode j.



The scattering spectra can be obtained from the conversation of energy verified be-
tween the incident and the scattered modes:

Ein =

NM∑
j=1

(E
(j)
Refl + E

(j)
Transm) (5)

NUMERICAL INVESTIGATIONS

Evanescent Modes

The Global-Local Matlab code developed by [4] was improved to include evanescent
modes in the analysis [10]. A series of numerical analyses were conducted on composite
plates with defects, to study the accuracy of the numerical solution. The composite
plates had a 10-layer layup [0/+ 45/+ 90/− 45/0]S of T800/3900-2 Graphite/Epoxy
unidirectional laminate, with a thickness of 0.2 mm for each layer. Material properties
were those used in [11] and reported in Table I in the principle direction of material
symmetry, where 1 represents the fiber direction, 2 represents the direction perpendicular
to the fibers in the lamina plane, and 3 represents the through-thickness direction. The
density of each lamina was 1550kg/m3. Throughout the tests conducted, the thickness
of the plates was fixed as 2mm, while a length of 5mm was chosen as the size of the
local region for most of the cases, and varied in some cases. The geometry, size, and
location of the defect varied inside the local region across different tests.

To ensure numerical accuracy, 20 finite elements per wavelength were used. Ac-
cordingly, each finite element was selected to be linear (four Gauss points) and squared
in shape, with sides equal to 0.1mm. At each frequency, the eigenvalue problem re-
turns a number of evanescent modes. They were selected on the value of abs(Im(ξh)
with respect to a threshold value since higher order evanescent modes are found to have
negligible effect in the analysis.

In Figure 2 the results of an S0 incoming mode traveling through the defected com-
posite plate are reported. The geometrical representation of the plate is shown in Figure
2 a, the rectangular notch has a length of 2 mm and a depth of 1 mm, and is located at
a distance of 1.5 mm from the local zone (LZ) boundaries. In Figure 2b a numerical
error is observed on the total scattered energy in the absence of evanescent modes with a
maximum error of 18%. On the contrary, when evanescent modes are included (Figure
2c), the errors are effectively corrected. It is important to note that the scattered energy
of each mode is also corrected.

Parallelization Computing

This section presents the speedup analysis of the serial implementation [8]. The
serial GL method computes the solutions for each frequency sequentially. The optimized

TABLE I. ELASTIC PROPERTIES OF THE COMPOSITE LAMINA

Property C11 C12 C13 C22 C23 C33 C44 C55 C66

GPa 162 3.98 3.98 10.4 3.81 10.4 3.45 6.21 6.21
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Figure 2. S0 incident energy spectra for a composite plate with a 2 × 1 mm rectangular notch (LZS =
5 mm): a) geometry of the plate; b) solutions without evanescent modes; c) solutions with evanescent
modes.

version solves the coupled solution in parallel, where each branch executes a different
frequency. The scalability of the code is influenced by both the number of frequencies
to analyze and the local region size. The former is related to the number of parallel
processors used when branches are running simultaneously, while the latter is related to
the amount of memory required per branch. The problem size is determined by the finite
element size.

An 8-ply carbon-fiber reinforced polymer (CFRP) plate with a length of 1 cm and a
thickness of 1 mm was tested. Material properties were those used in [3]. The element
thickness dz is determined by dz = h× tz/np

2
. In this equation, tz is the plate thickness,

np is the number of plies, and h is the scaling factor used for mesh refinement. The
element length dx is given by dx = h × λ

β
, where the scaling factor h is also used, and

a factor β of 10 is used to guarantee at least 10 elements per wavelength. In this work,
four element sizes were tested including 2h, h, h/2, and h/4.

The GL code was tested for the different problem sizes on a workstation with proces-
sor Intel® Xeon® W-2255 CPU @3.70 GHz, 10 physical cores, 20 logical processors,
and 31.7 GB of RAM memory. The Matlab code was implemented using the parallel
computing toolbox.

Speedup was tested for 1, 2, 4, 8, and 16 workers. Figure 3 shows the effect of the
number of workers for different problem sizes on the CFRP plate. For all problem sizes,
the computational time decreases as the number of workers increases up to the number
of physical cores available. However, when the number of workers is greater than the
number of cores but less than the number of logical processors, there is a minor reduction
or increase in execution times.

RESULTS AND DISCUSSION

Unforced Solution with Evanescent Modes

To develop some general guidelines or rules of thumb, a comprehensive parametric
analysis was conducted for composite plates with a notch. Various tests were performed,
with a focus on varying the distance between LZ and the scatterer, and the scatterer



Figure 3. Effect of parallel computing for different problem sizes on the CFRP plate case: a) computational
time versus the number of workers; b) speedup versus the number of workers.

dimensions. The results of the analysis are presented in terms of the overall error in the
total normalized energy. This error parameter is defined as the cumulative error over the
entire frequency range and is determined by comparing the area under the numerically
calculated effective curve with the expected value of one:

Err =

nf∑
k=1

|Sk
num − Sk

exp|
Sk
exp

(6)

where nf is the total number of frequency steps, Sk
num is the effective observed nu-

merical area under the total normalized energy curve, and Sk
exp is the expected area.

Figure 4 presents the results of the parametric analysis performed on the composite
plate. In Figure 4a, the size of LZ is set to 5 mm, and the rectangular notch at the
top of the plate has an aspect ratio of 2. The depth of the notch is varied from 0.2

(a) (b)

Figure 4. Parametric analysis for a composite plate in terms of total normalized energy error in the case
of a) size of a rectangular notch (LZS = 5 mm); b) distance from the left boundary, for a 2 × 1 mm
rectangular notch (varying LZS).



mm to 1mm. In Figure 4b, the width and the depth of the notch are set to 2 mm and
1 mm, while the distance between the LZ boundary and notch ranges from 2 mm to 6
mm. When evanescent modes were not considered, errors were generally higher for both
A0 and S0 incoming modes. It is also evident that higher errors were obtained for the
A0 mode compared to the S0 mode. When the S0 mode is incoming and evanescent
modes are not considered, it was found that a rectangular notch with an aspect ratio
of 2 was acceptable if its depth did not exceed 0.6 mm when the LZ was 5 mm wide.
Alternatively, a minimum distance of 4 mm from the left boundary was necessary to
achieve low errors. However, with an A0 incoming mode and no evanescent modes, a
wider distance between the LZ and the scattered or a shallower depth is required. When
evanescent modes are included, errors obtained from both incoming modes were less
than 1%.

Forced Solution without Evanescent Modes

The forced solution was applied to the same 10-ply CFRP plates in a pristine and a
notched configuration. The excitation used is a pure mode (quasi-S0), with a temporal
function of a narrowband tone-burst at 150 kHz, duration of five cycles. The source is
positioned at 0.01 m on the left of the origin, and receiver 1 is located at 0.1 m on the
right. The displacements are presented in 2D over a grid of one hundred equally spaced
receivers spaced by 1 mm. The solution is obtained for the frequency range (DC-801
kHz) with a frequency step of 2 kHz and time resolution of 0.62 µs.

The comparison of the resulting displacements between the pristine and 4-ply notched
(d = 0.8mm) CFRP plate is illustrated in Figure 5. In Figure 5a, the displacement for
the pristine plate shows wave propagation of the excited quasi-S0 mode. In contrast,
the notched Figure 5b, causes mode conversion into a slower and more dispersive mode
(quasi-A0), due to the defect’s asymmetry. The scattered mode in transmission is partic-
ularly visible in the out-of-plane displacement and was expected as the scattering spectra
in Figure 2c predicted.

CONCLUDING REMARKS

(a) (b)

Figure 5. 2D spatiotemporal response of transmitted ux, uy , and uz displacements for a quasi-S0 mode
incident, 150 kHz, in a) pristine and b) 4-ply notched CFRP plates.



This work has presented the numerical framework and implementation of the im-
proved Global-local method, highlighting its ability to effectively include evanescent
modes in the analysis and adapt to the forced solution framework. The effect of evanes-
cent modes has been studied by varying the size of the defect and the distance between
the LZ and the scatterer. The requirement of ensuring a minimum distance between the
LZ and the scatterer, based on the defect size and plate thickness, was found to be crit-
ical in the absence of evanescent modes. However, considering the evanescent modes
can significantly reduce the numerical errors and, consequently, the required minimum
distance. This leads to a reduction in computing costs while maintaining accurate results.

The inclusion of the forced solution utilizes normal mode expansion and enables
the computation of the waveguide response, in either pristine or damaged state, at any
location along the wave propagation direction and through the thickness. Additionally, it
can calculate the response to any spatial and temporal forcing function applied through
the thickness of the waveguide. Parallel computing is crucial for achieving accurate and
efficient resolution of the forced solution.

In future work, exploring the selection of specific evanescent modes based on dif-
ferent scatterer and material properties can enhance accuracy and efficiency. Additional
efforts, including experimental or numerical validations, can further validate the appli-
cability of the method. The authors are currently improving the solution to address these
limitations for quantitative non-destructive evaluation.
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