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ABSTRACT 
 

Acoustic steady-state excitation spatial spectroscopy (ASSESS) is a full-field 
ultrasonic inspection technique that can be utilized for structural health monitoring 
applications. ASSESS can rapidly identify damage or defects over a 360o field of view 
of a structure using geometry mapping and a scanning laser Doppler vibrometer (LDV) 
– enabling inspection and characterization across multiple large surfaces in a single 
measurement. However, variables like the incidence angle between the surface and 
LDV beam change when inspecting large or geometrically complex structures; greatly 
affecting the signal-to-noise ratio (SNR) of the measurement and the accuracy of 
damage estimation to an extent that has not previously been quantified. 

This work experimentally quantifies the uncertainty of thickness estimation derived 
from full-field steady-state wave fields over various incidence angles to provide trusted 
operating bounds. A rotation stage and hexapod assembly were used to orient an 
aluminum plate with manufactured thickness losses to up to 80o both horizontally and 
vertically in increments of 5o. The plate specimen was designed with an assortment of 
manufactured damage, including discrete regions with both continuous and 
discontinuous material thickness loss. An affixed transducer excited the plate with a 199 
kHz tone and an LDV recorded local surface response velocities. A LiDAR was used 
to measure the inspection surface geometry and random sample consensus (RANSAC) 
planar extraction was utilized to determine the orientation of the specimen with respect 
to the LDV and correct perspective distortions in the wavefield. 

This work lays an essential foundation for identifying physical limitations of the 
measurement system for scanning large and complex structures and providing 
quantified uncertainties for detected damage within a trusted operating range – an 
imperative step for adoption of this inspection technique within highly standardized 
industries. 
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INTRODUCTION 
 
Ultrasonic nondestructive evaluation (NDE) has a promising application for 

structural health monitoring (SHM) as a non-contact method with a large field of vision 
(FOV) [1]. However, an unquantified physical limitation exists as less light is reflected 
to the sensor as the incidence angle between the laser Doppler vibrometer (LDV) and 
the inspected surface increase while scanning large convex or planar structures. Many 
SHM interests involve convex geometries, like boat hulls or airplane fuselages [2], thus 
it is necessary to quantify how uncertainty changes with the increase of incidence angle 
to provide a trusted operating range, maximizing the scan range while maintaining 
measurement reliability. 

Acoustic steady-state excitation spatial spectroscopy (ASSESS) is a technology that 
can identify defects over a 360-degree FOV orders of magnitude faster than typical 
ultrasound NDE techniques, making it especially practical for scanning large structure 
[3]. ASSESS achieves this by exciting structures with a continuous harmonic steady-
state ultrasonic tone via a piezoelectric transducer and measuring the structure’s steady 
state surface velocity response within the 360-degree FOV using a custom scanning 
LDV [4]. A LiDAR simultaneously collects geometry information to correct for 
perspective distortions within plate-like surface responses using post processing 
algorithms [5]. Local wavenumber is estimated from this corrected surface velocity 
response through a succession of 2D band pass spatial filters [6]. The local wavenumber 
estimation is smoothed in post processing and is then used to highlight various defects 
within a structure, including material loss, corrosion, delamination, and porosity [7][8]. 
The measurement resolution is defined by the chosen angular pitch of the LDV’s local 
spherical coordinate system, which increases the effective step size over a convex 
structure when scanning away from a perpendicular scan region as illustrated in Figure 
1. This is another uncharacterized source of uncertainty as incidence angles increase. 
The insight gained from this work aides in identifying the effective operating FOV and 
hardware/software limits of scanning ultrasonic NDE techniques comparable to 
ASSESS for a range of defect severities, types, and sizes. 

 
 

 
Figure 1. Illustration of effective step size increasing over scan area. 

 



METHODS 
 
The test sample was a 10 mm thick bead-blasted 6061 aluminum plate with 

numerous built-in defects with thickness reductions ranging from 0 mm (no defect) to 
9 mm (severe thinning including: a linear gradient ramp, a 12 step ramp, and 8 bores 
(one bore and step represent the nominal 10 mm plate thickness). Features are at least 
one feature size (a bore diameter) from one another and plate edges to limit effects of 
acoustic wave interactions with defect and plate edges.  

Features are sectioned into 8 groups representing different thickness ranges for 
comparison [Fig 1]. The bores were designed to determine thickness estimation 
uncertainty for discontinuous defects. The step ramp was designed to evaluate 
uncertainties distinguishing different thicknesses within a large region with 
discontinuous defects, such as accidental cuts or gouges incurred in manufacturing 
environments. Lastly, the gradient ramp enables evaluation of uncertainties 
distinguishing thickness gradients with gradual thickness changes like that which can 
occur with corrosion/delamination. The opposing ramps also make it difficult to over fit 
processing parameters to this specific test plate, making for a more generalizable study. 
Any post-processing techniques of the wavenumber estimate, e.g. median-filter 
smoothing, that benefit from localizing the gradient feature, hinder the localization of 
the step feature, and vice versa. Processing parameters were heuristically chosen to 
balance thickness accuracy, localization, and consistency across all features in the zero-
rotation orientation. A ground truth map was created from the manufacturing inspection 
report (Figure 2).  

 
The sample was mounted 2.24 m away from the ASSESS system. The specimen is 

rotated using a rotation stage (Thorlabs HDR50), a hexapod (Physical Instrument H-
811.S2), and a series of mounting adapters to test incidence angles up to 80o both 
horizontally and vertically, in 5o increments (Figure 3). 

 
 

 
Figure 2. Ground truth thickness map for test specimen with the thickness values displayed on the 

color bar, and the group number displayed on the specimen geometry. 



 
Figure 3. Experimental setup showing the ASSESS system and test plate hardware. 

 
 

The system excites the plate through a clamped transducer driven at 199 kHz 
produced by a data acquisition system (NI USB-6363). The LDV (Polytec Vibroflex 
QTec) beam was rastered across the plate using a rotation stage (Thorlabs HDR50) and 
a galvanometer mirror for horizontal and vertical control. The LiDAR unit (Velodyne 
Puck Hi-Res) simultaneously collected a point cloud of the scan region geometry. The 
coordinate systems of the LDV measurements and LiDAR were manually registered 
together. 

Two scans were taken at each incidence angle tested: angular pitch was kept 
constant during the first and adjusted for the second proportional to the reduced 
perceived area. The angular pitch determines the number of samples collected at each 
“pixel,” and was proportionally changed to compensate for the effect of perspective 
between the plate and LDV. These two measurement sets provided a means for 
determining the effect of using a constant pixel pitch in real-world measurements for 
which large incidence angles would be present. The constant angular pitch of .015o x 
.015o was chosen to prevent spatial aliasing resolving the smallest theoretical 
wavelength corresponding to 1 mm thick sections of the plate at the most severe angles 
tested, therefore attributing any difference between these two scans to 
hardware/processing limits at severe angles.  

For each scan, the collected point cloud was cropped to the plate and RANSAC 
planar extraction was used to extract the resulting normal with respect to the LDV, i.e. 
incidence angle, and the perspective was corrected accordingly as described in [5] to 
eliminate perspective distortions. The local wavenumber is mapped to thickness using 
the material’s dispersion curves as described in [6]. Thickness estimates were registered 
to the ground truth map using translation/rotation transformations and manually selected 
key points from the centers of identified bores and the severe edge of ramps within the 
thickness estimate map using OpenCV [9]. Thickness estimates for incidence angles 
where no features for registration were discernible were excluded from the final dataset.  

 
STATISTICAL METHODS 

 
Residual distributions were calculated through a pixel-wise subtraction of the 

registered thickness estimate and ground truth map. This was performed for each 
thickness group and only the nominal defect regions to evaluate thickness estimation 
uncertainty. Due to poor localization in severe angle cases (see Figure 3 for an example), 
the residuals were masked to isolate thickness estimation uncertainty from localization 
ability. The resulting residual distributions were well sampled (n > 500), treated as 
Gaussian, and the median and 95% confidence intervals were recorded. Another 



distribution was created in which the ramp groups were expanded horizontally by 10 
mm to determine inter-defect thickness separation and uncertainty. 

Residuals were not assumed to be centered on zero to not account for under/over 
estimation. By default, the center is determined by using the mode of the binned residual 
distribution if it falls between +/- 2.5 mm. In severe angle cases where the mode may 
fall outside of that range, two normal distributions made up the residual distribution: 
one smaller curve representing the poorly localized thickness estimate, and another 
representing where the spatial-based processing was largely unable to accurately 
estimate the nominal plate thickness. The first is masked for by enforcing two groups 
using k-means clustering using Scikit-Learn and using the center of the cluster closest 
to zero as the center of the distribution [10]. If the absolute value of the residual center 
was greater than 3 mm, it was considered to be outside the viable analysis range and 
subsequently not included in the final dataset. Group 1 required a more stringent 
threshold for its mode to fall within +- 1 mm before relying on k-means clustering to 
mask for the estimation. 

 
RESULTS & DISCUSSION 

 
For brevity, results for three thickness groups are reported in this paper. Group 

0 and Group 7 represent the bounding thickness cases for the test plate and Group 2 
provides another reference for performance at higher thickness where there is less 
sensitivity in the thickness estimation because of the flatness of the dispersion curves in 
that range.  

Three types of defect features were chosen to successfully reveal different 
performance characteristics within each thickness group. The bores behaved as small 
individual defects with distinct edges. The stepped ramp behaved as one large defect 
with numerous edge boundaries that provided ample opportunities for reflections and 
pooling of the acoustic waves, and thus was more easily resolved by ASSESS. The 
gradient ramp behaves as one large defect as well. However, because of the continuous 
geometry of this defect, the acoustic waves were able to more easily escape, and thus 
provided an operating range between the other two features. The normal assumption for 
the residual distributions was found to hold for most groups. Group 0 behaved like the 
left half of a normal distribution as the processing parameters used for ASSESS rarely 
overestimated past the nominal thickness of the plate.  

For the following figures, rMu refers to the residual distribution median, rLb to the 
lower bound of the 95% confidence interval, and rUb to the upper bound. The left 
summarizes the constant pitch measurements, while the right summarizes the 
compensated pitch measurements. Each column refers to a defect, and each row displays 
the results of each feature. Each tile within each subplot shows the residuals of the 
estimated thickness (in mm). A red color indicates underestimation, while a blue color 
indicates overestimation. Black tiles are measurements that fall outside of the viable 
analysis range.  
  



 
Figure 4. Measurements at various incidence angles – note how the largest incidence angle 

measurements have limited discernable features. 
 
 

 
Figure 5. Residual statistics for thickness group zero (absolute thickness of 9.72 – 10 mm, or a 

thickness reduction of 0% – 3%). 
 
 



 
Figure 6. Residual statistics for thickness group two (absolute thickness of 6.14 – 7.42 mm, or a 

thickness reduction of 26% – 39%). 
 
 

 
Figure 7. Residual statistics for thickness group seven (absolute thickness of 1 – 2.3 mm, or a 

thickness reduction of 77% – 90%). 
 
 



 
Figure 8. Improvement from compensated pitch for non-control groups, green tiles have no 

acceptable constant pitch scan. 
 
 

Observing the medians of each residual distribution, ASSESS consistently 
underestimated thickness for Groups 0-6. Thus, rather than choosing traditionally well 
behaving residuals for the reliable operating ranges, bounds in which medians and 
confidence intervals behave most like 0° scans for each group are chosen. The statistics 
are observed to be slightly asymmetric about which direction the plate is rotated, 
identifying bias during the measurements. This may be because the two axes of each 
pixel are controlled by different hardware, or feature locations on the plate. 

 
CONCLUSIONS 

It can be concluded that the ASSESS system has a modest ± 20o (horizontal and 
vertical) operating FOV for effectively estimating thicknesses greater than 5 mm (or 
thickness reductions less than 50%). Thicknesses less than 5 mm can be resolved up to 
a FOV of ± 40o (thickness reductions greater than 50%). Within the identified operating 
range, there is no observed improvement from compensating the measurement pitch, 
which rules out a hardware limitation, until the large incidence angle measurements 
where compensating for pitch begins improving results. 

This paper demonstrates the limitations of an ultrasonic NDE method for planar 
specimens with non-zero incidence angles. Large thick-walled structures should be 
inspected from a larger stand-off distance or with multiple smaller scans, and convex 
structures require even tighter bounds based on the radius of curvature. Within these 
bounds, ASSESS can effectively resolve both gradient and discontinuous defects, and 
separate different characteristics if an appropriately fine constant pitch size is chosen. 
Increasing measurement resolution, and effectively improving the SNR, does not 
improve thickness estimation until an angular threshold set by the operating bounds is 
met, and then only enables poor estimations to be made as seen in Figure 4. Although it 
is prone to underestimation, uncertainty is predictable and uniform within the 
conservative operating bounds. The defect separation performance as seen in the ramp 
defect uncertainties also provides confidence in mapping out identified defects to 
evaluate the extent of damage in the cases of corrosion and delamination. 

 
FUTURE WORK  



To isolate the uncertainty from the LDV’s SNR alone at higher incident angles, 
another experiment could be performed using the method described in previous work 
[4]. This study could be repeated with different surface reflectivities to further 
characterize the hardware limits revealed directly to the amount of light reflected to 
the sensor. It would also be insightful to repeat this experiment with a thinner plate 
to evaluate ASSESS’ sensitivity as result of which part of a dispersion curve is being 
used.   
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