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ABSTRACT 
 

An inverse procedure for damage identification on 1D and 2D solids based on wave 
propagation using the multiresolution finite wavelet domain (MR-FWD) method is 
presented. The forenamed method utilizes Daubechies wavelet and scaling functions for 
the approximation of state variables and as such, it involves two types of solutions, the 
coarse and the fine solutions. In that way, the multiresolution nature of the method can 
be utilized for efficient damage estimation in experimental applications since the fine 
solutions of the method have manifested remarkable localization and isolation 
capabilities and high sensitivity to damage. In order to fully take advantage of the 
additional benefits of the MR-FWD method, full-field displacement measurements of 
the wave propagation are taken into consideration. Wavelet decomposition using 
Daubechies wavelets is now applied on the measurements, leading to approximation 
and detail components that are directly comparable to the coarse and fine solutions of 
the multiresolution simulation, respectively. Therefore, MR-FWD models can be 
created using the same Daubechies wavelets as the decomposition of the experimental 
data, so as to compare the simulation results with the measured ones. Numerical results 
reveal that comparing the detail component of the experiments with the fine solution of 
the simulations using appropriate metrics can lead to efficient damage identification. In 
such manner, an optimization process can be conducted in order to characterize the 
investigated damage scenarios. This procedure can lead to more sensitive and accurate 
damage estimation due to the advantages of the multiresolution analysis. 

 

INTRODUCTION 

The structural components get more sophisticated as time goes on and demands in 
industries like aerospace, maritime and infrastructure continue to rise. Structural Health 
Monitoring (SHM) is a process that involves gathering and interpreting data from a 
system of sensors that measure the structural response in order to objectively assess the 
condition of the structure. The main objective of a SHM system is to identify damage 
that could eventually lead to the failure of a particular component at an early stage. The 
findings of possible defects that are discovered through monitoring may subsequently 
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be utilized to inform decisions for corrective actions [1]. Due to the low operational 

cost, the ability to scan broad areas and the capacity to identify small defects, wave-

based SHM is a significant category of SHM procedures that is extensively explored 

[2]. Guided waves have been used for damage imaging utilizing many algorithms such 

as the delay-and-sum [3] and time reversal [4] techniques.  

This paper focuses on the improved capabilities of the multiresolution finite wavelet 

domain method (MR-FWD) in the development of an inverse methodology employing 

model update to provide damage estimation using wave propagation in composite strips 

and 2D solids. The MR-FWD method utilizes both the scaling and wavelet functions of 

the Daubechies wavelets as basis functions [5], forming a hierarchical set of equations 

of motion. Concerning 1D models, the multiresolution (MR) approximation involves 

two solution types: the coarse and the fine solutions. When it comes to 2D models, the 

MR approach entails four solutions: the coarse solution and three fine solutions. The 

MR-FWD method has demonstrated outstanding computing advantages in transient 

dynamic simulations of rods, 2D solids [6], Timoshenko beams [7], and layerwise strips 

[8]. In order to benefit from the enhanced sensitivity of the fine solutions, the method’s 

multiple resolution components are utilized in the model update process [9]. Wave 

response full-field measurements are considered available for demonstration purposes. 

Following the multiresolution decomposition [10], the measurements are decomposed 

to produce the approximation and detail components of the measurements, which are 

analogous to the coarse and fine solutions of the MR-FWD approach, respectively. Τhis 

paper explores the potential of the proposed inverse methodology and its higher 

sensitivity in the parameter estimation. 
 

 

THEORETICAL BACKGROUND 
 

MR-FWD Method For 1D Models 

 

The 1D MR reconstruction & decomposition approaches are shown in Figure 1.  

The 1D generalized displacement approximation for R resolutions regarding the 

MR-FWD method is expressed as: 
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where 
0ˆ
Cn

u  are the coarse wavelet coefficients at resolution 0, ˆS

Fn
u  are the fine wavelet 

coefficients at resolution S. Also, φ is the Daubechies scaling function (SF) and ψ is the 

Daubechies wavelet function (WF). 

Single-Resolution or Resolution 0 (C0). The C0 solution is obtained employing only 

the DB SFs. The equation of motion is: 
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are the coarse resolution stiffness & mass matrices, and C
F  is the coarse load vector.  



 
Figure 1. Schematic representation of 1D multiresolution reconstruction and decomposition process. 

Resolution 1 (C1). According to the MR process (Figure 1) the MR solution system is: 
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where ˆ
F

u  are the fine wavelet coefficients, ˆ
C

u  are the coarse wavelet coefficients for 

resolution 1, [ ]
FF

K  and [ ]
FF

M  are the fine resolution stiffness & mass matrices and F
F  

is the fine resolution load vector. Also, ˆ
C

u  is not equal to ˆ
CC

u  because of the stiffness 

coupling terms, [ ]
CF

K  and [ ]
FC

K . However, [ ]
CF
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FC

M  are equal to zero and [ ]
CC

M , 

[ ]
FF

M  are diagonal due to the orthogonality of SFs/ WFs. 

 

MR-FWD Method For 2D Models 

 

The 2D MR reconstruction & decomposition approaches are visualized in Figure 2. 

The 2D generalized displacement approximation for R resolutions is given as: 
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where ˆ
CC

u  is the coarse component, while ˆ
CF

u , ˆ
FC

u  and ˆ
FF

u  are the fine components; 

CF is the vertical detail, FC is the horizontal detail and FF is the diagonal detail 

component. For resolution 1, the MR solution system is given as: 
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Figure 2. Schematic representation of 2D multiresolution reconstruction and decomposition process. 
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INVERSE DAMAGE ESTIMATION APPROACH 
 

The suggested inverse damage estimating process utilizes the MR-FWD method's 

various resolution components to benefit from the great sensitivity of its fine solutions, 

whether in 1D or 2D scenarios. To accomplish this, it is also necessary to decompose 

the experimental data using the same SF/WF and resolution in order to obtain the 

approximation and detail components of the data, which are directly comparable to the 

coarse and fine solutions of the MR simulation, respectively. 
 

Methodology For 1D Models 

 

The proposed methodology for 1D scenarios requires the wave experiment full-field 

data. These data are decomposed into separate components for each time step using a 

specific Daubechies SF/WF and resolution level. The approximation and the detail 

component of the experimental data are thus acquired as two datasets. Then, utilizing 

the MR-FWD approach for the simulations, an optimization process can be carried out 

to employ the coarse and fine solutions, which are directly comparable to the 

approximation and detail components. The design variables can be estimated by using 

suitable objective functions, and so, the damage scenario can be evaluated. The inverse 

damage estimation procedure is schematically presented in Figure 3. 
 

Methodology For 2D Models 

 

The proposed methodology for 2D scenarios requires a snapshot of full-field data. 

The process is approximately the same as in the 1D cases and is illustrated in Figure 4. 

 

 
Figure 3. Damage estimation process using the MR-FWD method for 1D cases. 
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Figure 4. Damage estimation process using the MR-FWD method for 2D cases. 

 

 

NUMERICAL RESULTS 
 

1D Scenario 

 

In this paper, the “pseudo-experimental” data are obtained from simulations in order 

to show the potential of the proposed methodology. The studied structure is a damaged 

composite strip, with geometric and model characteristics that are shown in Figure 5. 

The strip consists of unidirectional CFRP with material properties shown in TABLE I. 

Also, the analysis duration is 0.05 ms. A single-resolution FWD analysis (C0) is utilized 

to produce the pseudo-experimental data using 460 DB6 elements.  
 

TABLE I. MATERIAL PROPERTIES 

 E11  (GPa) E22=E33  (GPa) G12=G23=G13  (GPa) v12=v13 v23 ρ (kg/m3) 

CFRP 120 7.9 3.4 0.275 0.15 1578 

The vertical displacement at the beam’s top surface is the quantity that is considered 

as measured by a full-field scanning vibrometer. Those measured data are decomposed 

in each time step using wavelet decomposition in one resolution with the Daubechies 

DB6 wavelet and so, an approximation and a detail dataset have occurred. Therefore, 

the utilized objective functions employed in the model update process consist of metrics 

that compare the detail component of the pseudo-experimental data to the fine solution 

of the MR-FWD simulations. Two objective functions are used: the first compares the 
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envelopes of the two forenamed datasets (detail component vs fine solution) and the 

second compares the wavenumber spectra of the two datasets at the last time step.  

 
Figure 5. Geometric representation of the damaged strip, with the damage shown in dark gray color. 

Determining the design variables is necessary before beginning the optimization 

process. The thickness ratio of the damaged span and the severity of the damage will 

essentially be the design factors in this case study. The coefficient that is multiplies all 

the elastic constants to produce the damaged material is the first design variable, X1. 

The proportion of the height, h1, to the overall height, (h1+h2), is the second design 

variable, or X2. TABLE II displays the lower and upper bounds for the design variables. 
 

TABLE II. DESIGN VARIABLES AND THEIR LOWER AND UPPER BOUNDS 

Design Variables Lower Bound Upper Bound 

X1 0.1 1 

X2 0.1 0.9 

 

In this work, the Simulated Annealing (SA) algorithm [11] is used as a metaheuristic 

method to address the relevant optimization issue. Using MATLAB® R2019b on a 

laptop with an Intel® Core i7-9750H @ 2.60 GHz CPU and 16 GB RAM, several 

metaheuristic algorithms were tested before the SA method was chosen because of its 

much quicker results. Due to the stochastic and single-solution character of the SA 

algorithm, it should be noted that multiple runs have been carried out with various initial 

values of the design variables. Τhe results of the inverse methodology are displayed in 

TABLE III. Two different approaches are evaluated. The first one, designated as A1, 

uses the detail component of the pseudo-experimental signals and the fine solution of 

the MR-FWD models, in order to demonstrate the higher sensitivity of the fine 

solutions. The second approach, termed as A2, is similar to the conventional model-

based SHM methods since it directly compares the simulated results to the experimental 

ones. In TABLE III, the correct values and the predicted values of the SA algorithm are 

presented, as also their percentage differences (PD) for each design variables. 
 

TABLE III. RESULTS OF THE MODEL UPDATE PROCEDURE 

 X1 X2 PD w.r.t. X1 PD w.r.t. X2 

Correct values 0.6 0.5 0% 0% 

A1 approach 0.5804 0.4988 3.2667% 0.24% 

A2 approach 0.5765 0.5246 3.9167% 4.92% 

 

Both approaches clearly produce adequate results, although the A1 approach is more 

sensitive and accurate than the A2 in both design variables, and particularly the second. 

It is important to note that, for the majority of the trials, the number of iterations of the 

SA algorithm for the A1 and A2 approaches was roughly the same, but in certain trials, 

the A1 required less iterations than the A2 approach. Furthermore, if the same procedure 

were carried out using a single-resolution method, such as FE, and the results were 

subsequently decomposed to obtain the corresponding "coarse" and "fine" solutions, the 
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h2=0.5mm

5-cycle pulse
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40% material 

degradation



following issues would arise: a) compared to the MR-FWD analyses, such models are 

far more time-consuming, and b) even if accuracy remained constant, the additional 

wavelet decomposition that is required, results in a 5–13% slower procedure, depending 

on the discretization, degrees of freedom and number of iterations. 
 

2D Scenario 

 

The inverse multiresolution method has not been fully performed in 2D cases, yet. 

However, as illustrated in Figure 4, the model update process could be performed in 2D 

cases in an analogous way as in the 1D cases. The potential of the proposed 

methodology for 2D cases is showcased in the wave propagation simulation of a 

damaged aluminum solid. The aluminum’s Elastic modulus is 70 GPa, the Poisson’s 

ratio is 0.3 and the density is 2700 kg/m3. Its dimensions are 2m x 2m x 10-3m, and it is 

clamped at its four edges. It is excited by a horizontal 5-cycle pulse at x=1m, y=1m with 

central frequency of 50 kHz. The analysis duration is 0.2 ms. The damage ranges from 

1.35m<X<1.45m and 1.35m<Y<1.45m and is modeled as material degradation that 

reduces the elastic properties by 90%. For the MR model, a mesh of 200 x 200 DB3 

elements is used. In Figure 6, the axial displacements (X direction) of the aluminum 

structure at the end of the analysis are illustrated for the coarse solution and the three 

fine components. Both the compression and shear wave modes are visible in the CC0 

solution. The vertical fine solution, CF0, isolates the shear wave mode, the horizontal 

fine solution, FC0, captures both wave modes, whereas the diagonal fine solution, FF0, 

practically isolates the damaged region. 

The coarse solution (CC0) is now decomposed in one resolution by the DB3 wavelet, 

in order to produce the approximation and three detail components that are directly 

comparable to the three fine solutions. Those signals are shown in Figure 7, and the 

similarity with the fine solutions of the MR-FWD method is obvious. 

 
Figure 6. Axial displacement field of the coarse (CC0), vertical fine (CF0), horizontal fine (FC0) and 

diagonal fine (FF0) solution, at t=0.2ms. 
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Figure 7. The four components of the wavelet decomposition of CC0 solution that yields the 

approximation and three detail components. 
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