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ABSTRACT 
 

This paper investigates the influence of interfacial imperfections on the dispersion 
relationship of torsional waves in a composite hollow cylinder. The imperfect interface 
between the inner and outer tubes is modelled by a linear spring interface model, where 
tractions are continuous across the interface and the displacement jump is assumed to 
be proportional to the tangential shear stress acting on the interface. The dispersion 
curves of normalized frequency as a function of normalized wavenumber can be 
determined by solving an eigenvalue problem. It is shown that for a fixed wavenumber, 
the modal frequency decreases with increasing interfacial spring compliance, especially 
for smaller wavenumbers. Besides, at larger wavenumbers, the loss of perfect continuity 
at the interface has a reduced impact. The thickness effect of the outer tube is further 
analyzed. The computational results indicate that the modal frequency rises in the case 
of the thinner coating layer. These torsional wave propagation features may provide 
insights and guidelines for nondestructive evaluation of composite hollow cylinders 
with imperfect interfaces. The paper finishes with a summary and concluding remarks. 

 
 

INTRODUCTION 

Hollow cylindrical structures are often deployed for heat and gas transportation 
purposes in aerospace and civil engineering. Such components usually consist of an 
inner and outer layer and are made of different isotropic or composite materials. 
However, during the in-service period, interfacial imperfections may take place due to 
the variation of stress distribution, leading to the emergence of damages, such as 
delamination and slippage. Therefore, it is of great importance to develop effective 
methodologies for interfacial damage detection in cylindrical structures before 
catastrophic failure occurs. 
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Torsional waves have been proven as a powerful candidate for the inspection of 

pipe-like structures, and their wave-propagation characteristics have also been 

extensively studied by the Non-destructive Evaluation (NDE) and Structural Health 

Monitoring (SHM) communities [1]-[4]. The classic linear three-dimensional theory of 

elasticity was employed to model the propagation of harmonic waves in composite 

cylinders. It can be noticed that the continuity conditions at the interface were further 

utilized since the interface between the layers was considered as perfect, i.e., continuity 

of displacement and traction. However, in practical applications, it is still hard to 

guarantee interfacial perfection even though adopting advanced welding technology for 

interface bonding. In addition, the interfacial imperfections may evolve into a more 

serious scenario and even endanger the integrity of the entire structure. Therefore, the 

investigation of the influence of imperfect interface on the torsional wave features 

becomes necessary and meaningful. Many researchers have spared efforts to investigate 

the dispersion curves of torsional waves in bi-material cylinders with imperfect interface 

conditions. Berger et al. modified the standard perfect-interface condition by 

introducing the displacement jump between the core and the cladding [5]. Based on this 

pioneer’s work, the effect of the initial stresses on torsional wave dispersion curves was 

further studied [6, 7]. In this study, a composite hollow cylinder is considered, and it is 

assumed that the interface between the inner and outer tubes is imperfect. 

This paper is arranged as follows. The spring interface model is initially formulated 

to introduce the interfacial imperfections into the frequency equation. The dispersion 

curves with varying imperfect interface conditions are then presented. Subsequently, the 

thickness effects of the outer tube are investigated and the computational results 

considering various coating thicknesses are discussed. Finally, some conclusions are 

given. 

 

SPRING INTERFACE MODEL FORMULATION 

 

Let ( , , )r z  be cylindrical polar coordinates. We consider a composite hollow 

cylinder shown in Figure 1. The cylinder consists of a hollow, r c  , an inner tube, 

c r a  , and an outer tube, a r b  . It is assumed that both tubes are made of 

linearly elastic materials, noted as material 1 and 2, respectively. The corresponding 

material properties and geometries of the cylinder are accordingly presented in TABLE 

I and TABLE II. 

 

 
Figure 1. A composite hollow cylinder. 

 

 

  

  

  

  

  

  



TABLE I. MATERIAL PROPERTIES OF THE CYLINDER 

Materials 
Young’s modulus E 

(GPa) 
Poisson’s ratio υ 

Density ρ 

(g/cm3) 

Material 1 

(Zircaloy-4) 
99.3 0.37 6.56 

Material 2 

(Chromium) 
279 0.21 7.19 

 
TABLE II. GEOMETRIES OF THE CYLINDER 

Inner tube radius a 

(mm) 

Outer tube radius b 

(mm) 

Hollow radius c 

(mm) 

11 11.1 10 

 

For torsional waves, the only non-zero displacement component is the tangential 

displacement v , and v  itself should be independent of  . The governing equation in 

polar coordinates is given by [8] 
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Hooke’s law relates the stresses r  and z  to v  as 
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where   represents the Lamé constant. 

Making use of Eq. (2) into Eq. (1) gives 
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where 2c 


=  denotes the speed of shear waves in an infinite domain. 

For waves propagating in the positive z-direction, which can be formulated as 

 ( )( , , ) ( ) i kz tv r z t V r e −= , (4) 

where i  stands for 1− , k  and   are real. Then, substituting Eq. (4) into Eq. (3), 

which renders 
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This is Bessel’s function of order one. Its solutions depend on the sign of 
2 2 2k c − , 

which can be defined as 
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where nJ  and nY  are Bessel functions and nI  and nK  are modified Bessel functions. 

Thus, the appropriate solution of Eq. (5) takes the form of [5] 
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where A  and B  are arbitrary constants; 0 1( ) ( )Z x Z x = −  and 0 1( ) ( )W x W x = − . And 

we can use the expression above to indicate quantities in the inner and outer tubes with 

subscripts 1 and 2, respectively. The displacement can be expressed as 
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where 
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where 
j jk c= . 

 

Boundary and Interface Conditions 

 

With reference to Figure 1, now we need to enforce the boundary and interface 

conditions to the formulations. The traction-free boundary conditions should be applied 

on both inner and outer surfaces as 

 ( ) 0r c =  and ( ) 0r b = . (10) 

The imperfect interface conditions often involve the distinction of displacements 

and tractions between the two contact surfaces [9]. And for most numerical models, 

these quantities on different sides of interfaces are assumed to be linearly related with 

each other. In this study, the imperfect interface is considered and modeled by a linear 

spring interface model. The interfacial tractions are continuous across the interface, and 

the displacement jump is proportional to the tangential shear stress acting on the surface. 

An interfacial spring compliance constant is introduced to represent the interfacial 

imperfections, denoted as  . Therefore, the interface conditions can be illustrated as 

 ( ) ( )r ra a  + −=  (11) 

and 
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It should be noted that the perfect interface condition would be recovered when 0 = . 

 

Frequency Equation for Dispersion Curves Calculation 
 

The torsional wave dispersion curves can be determined by combining the 

displacement and stress equations with the boundary and interface conditions. 

Substituting Eq. (2) and Eq. (8) into Eq. (10), yields 
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From the continuity condition of traction from Eq. (11) 
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In terms of the displacement jump interface condition by Eq. (12), it turns out as 
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Eqs. (13)-(16) provide four equations in the four unknown constants, 1A , 2A , 1B , and 



2B . In matrix form, the system of equation can be expressed as 

 Db = 0 , ( )1 2 1 2, , ,
T

A A B B=b . (17) 

Once the eigenvalue problem of Eq. (17) is solved, one will have the dispersion 

relationship between 
( )nk  and 1k  or 2k , where 

( )nk  is the eigenvalues of Eq. (17). 

Further, the eigenvector b  can also be solved up to a constant amplitude. By 

normalizing it, one can have 

 
* 1T =b b , (18) 

where the asterisk represents complex conjugate; the superscript T means the transpose 

operation. Note that all components of b  are known in terms of material parameters, 

the given frequency  , and the corresponding wavenumber k . 

Finally, for a nontrivial solution, we can identify the frequency equation for 

dispersion curves calculation as 

 det 0=D . (19) 

We have determined the dispersion curves with normalized frequency, 

 2 2 ( )k b a = −  (20) 

as a function of normalized axial wavenumber 

 ( )k b a = − , (21) 

for a given value of the interfacial spring compliance constant  . 

 

DISPERSION CURVES WITH VARYING INTERFACE CONDITIONS 
 

In this section, we will present the computational results considering different 

interface conditions., i.e., 0 = , 0.1 = , 0.5 = , and 1 = . Figure 2 shows the 

dispersion curves for the second mode and Figure 3 displays the third mode. It should 

be noted that the wave features of the first torsional mode are identical regardless of the 

interface conditions. The detailed demonstration can be found in Ref. [5]. With the 

increment of interface spring compliance, the modal frequency decreases dramatically, 

especially at the small values of wavenumber. On the other hand, the influence of 

interfacial imperfections fades when it comes to larger values of   as all the dispersion 

curves gradually convergence. 
 

 
Figure 2. Dispersion curves for the second mode in a composite hollow cylinder.  
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The torsional waves for the third mode exhibit similar characteristics to the second 

mode. When the imperfect interface starts to emerge, the modal frequencies obviously 

drop in comparison with the perfect-interface case. It means that the variation of 

resonant frequencies of the third mode can serve as a competitive candidate to predict 

the appearance of interfacial imperfects. On the other hand, with the spring compliance 

continuing to increase, its influence on the resonant frequency fades. In addition, one 

corner at 0.22 =  can be noticed in the dispersion curve for 1 = . 

 

 
Figure 3. Dispersion curves for the third mode in a composite hollow cylinder. 

 

 
Figure 4. Normalized frequency VS interfacial spring compliance at fixed wavenumber for the second 

mode. 

 

Another approach to determine the effects of imperfect interface is analyzing the 

dispersion curves with respect to interfacial spring compliance by fixed wavenumber. 

Figure 4 illustrates the numerical results for the second mode. It can be observed that 

the interfacial imperfections exert a greater influence on the modal frequency at the 

small wavenumbers. Furthermore, all the curves seem to approach asymptotic values 

when  →  . It can be inferred that the asymptote should be the non-dispersive first 

modes in the cylinder. 
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THICKNESS EFFECT 
 

For a composite hollow cylinder, the outer tube is expected to functionalize as the 

coating layer to avoid the corrosion of air and water. Its thickness may experience a 

constant decrease in the service process. Therefore, this study further investigates the 

thickness effect on the torsional wave features considering imperfect interface 

conditions. 

To quantify the varying thicknesses, we introduce non-dimensional parameters as 

 , , , ,j j j j
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Thus, Eqs. (13)-(16) can be rewritten as 
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Using Taylor series expansions at 0h =  up to the first order by Mathematica as, 

 
( ) ( ) ( )

( ) ( ) ( )

2 2

2 2 2 2 2 2 2 3 2

2 2 2 2

2 2 2 2 2 2 2 3 2

(1 ) 2 ,
(1 )

(1 ) 2 ,

j

j

J q h J q J q q J q h k k
Z q h

I q h I q I q q I q h k k

  +  + −     
 + =  

 +  + +     

 (27) 

 
( ) ( ) ( )

( ) ( ) ( )

2 2

2 2 2 2 2 2 2 3 2

2 2 2 2

2 2 2 2 2 2 2 3 2

(1 ) 2 ,
(1 )

(1 ) 2 ,

j

j

Y q h Y q Y q q Y q h k k
W q h

K q h K q K q q K q h k k

  +  + −     
 + =  

 +  + −     

 (28) 

 2 1(1 ) 1 2 , (1 ) 1h h h h−+  + +  − . (29) 

Therefore, by only retaining the linear terms, Eqs. (24)-(26) can be formulated as 
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When 0h →  (without the outer tube), Eqs. (30)-(32) render 
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Therefore, Eqs. (33)-(35) can be utilized to calculate the wave-propagation features in 

a hollow cylinder without the outer coating layer. 

 



Dispersion Curves with Varying Coating Thicknesses 

 

In order to compare the dispersion curves regarding with various coating 

thicknesses, three cases are selected, i.e., 0h →  (without coating layer case), 

1/1100h =  (reduced coating thickness case), and 1/110h =  (composite hollow 

cylinder condition). Figure 5 and Figure 6 show the computational results for the second 

and third modes, respectively. 

 

 
Figure 5. Dispersion curves for the second mode with different coating thicknesses. 

 

 
Figure 6. Dispersion curves for the third mode with different coating thicknesses. 

 

It can be noticed that the modal frequency increases with the coating thickness 

decreasing, especially for the small values of wavenumber. In other words, for the fixed 

wavenumber, torsional waves in the thicker-coating cylinder would propagate slower 

than those in the thinner one. Thus, we can take advantage of the changes to wave 

velocities to predict the variation of the coating thickness. Besides, if a composite 

hollow cylinder completely loses its outer tube, the wave-propagation features will not 
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be affected by the interfacial imperfections. This aspect can be reflected on the 

superposition of the dispersion curves when 0h → . 

 

CONCLUDING REMARKS 

 

This paper presented a systematic investigation of torsional wave propagation in a 

composite hollow cylinder considering imperfect interface conditions. The spring 

interface compliance was utilized to describe the interface imperfections. It was found 

that the interfacial imperfections had a great influence on the dispersion curves within 

the small wavenumber ranges. In addition, the modal frequencies increased with the 

thickness of the outer tube declined. These wave features may help develop effective 

NDE and SHM methodologies for the inspection of composite hollow cylinders. 

 

ACKNOWLEDGEMENTS 

 

This research was supported in part by the US Department of Energy through its 

Nuclear Energy University Programs, DE-NE0008943. 

 

REFERENCES 
 

[1]  S. K. Clark, "Torsional Wave Propagation in Hollow Cylindrical Bars," The Journal of the Acoustical 

Society of America, vol. 28, no. 6, pp. 1163-1165, 1956.  

[2]  A. E. Armenakas, "Torsional Waves in Composite Rods," The Journal of the Acoustical Society of 

America, no. 3, pp. 439-446, 1965.  

[3]  A. E. Armenakas, "Propagation of Harmonic Wa es in Composite Circular‐C lindrical Rods," The 

Journal of the Acoustical Society of America, vol. 47, no. 3B, pp. 822-837, 1970.  

[4]  M. J. S. Lowe, D. N. Alleyne and P. Cawley, "Defect detection in pipes using guided waves," 

Ultrasonics, vol. 36, no. 1-5, pp. 147-154, 1998.  

[5]  J. R. Berger, P. A. Martin and S. J. McCaffery, "Time-harmonic torsional waves in a composite 

cylinder with an imperfect interface," J Acoust Soc Am, vol. 107, no. 3, pp. 1161-1167, 2000.  

[6]  T. Kepceler, "Torsional wave dispersion relations in a pre-stressed bi-material compounded cylinder 

with an imperfect interface," Applied Mathematical Modelling, vol. 34, no. 12, pp. 4058-4073, 2010.  

[7]  A. Ozturk, "Propagation of torsional waves in pre-stretched composite cylinder with an imperfect 

interface," in Turkish Physical Society 32nd International Physics Congress, Bodrum, Turkey, 2017.  

[8]  L. Xu, H. Fan and Y. Zhou, "Torsional wave in a circular micro-tube with clogging attached to the 

inner surface," Acta Mechanica Solida Sinica, vol. 30, no. 3, pp. 299-305, 2017.  

[9]  P. A. Martin, "Boundary integral equations for the scattering of elastic waves by elastic inclusions 

with thin interface layers," Journal of Nondestructive Evaluation, vol. 11, no. 3-4, pp. 167-174, 1992.  

 

 

 




