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ABSTRACT

This paper investigates the influence of interfacial imperfections on the dispersion
relationship of torsional waves in a composite hollow cylinder. The imperfect interface
between the inner and outer tubes is modelled by a linear spring interface model, where
tractions are continuous across the interface and the displacement jump is assumed to
be proportional to the tangential shear stress acting on the interface. The dispersion
curves of normalized frequency as a function of normalized wavenumber can be
determined by solving an eigenvalue problem. It is shown that for a fixed wavenumber,
the modal frequency decreases with increasing interfacial spring compliance, especially
for smaller wavenumbers. Besides, at larger wavenumbers, the loss of perfect continuity
at the interface has a reduced impact. The thickness effect of the outer tube is further
analyzed. The computational results indicate that the modal frequency rises in the case
of the thinner coating layer. These torsional wave propagation features may provide
insights and guidelines for nondestructive evaluation of composite hollow cylinders
with imperfect interfaces. The paper finishes with a summary and concluding remarks.

INTRODUCTION

Hollow cylindrical structures are often deployed for heat and gas transportation
purposes in aerospace and civil engineering. Such components usually consist of an
inner and outer layer and are made of different isotropic or composite materials.
However, during the in-service period, interfacial imperfections may take place due to
the variation of stress distribution, leading to the emergence of damages, such as
delamination and slippage. Therefore, it is of great importance to develop effective
methodologies for interfacial damage detection in cylindrical structures before
catastrophic failure occurs.
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Torsional waves have been proven as a powerful candidate for the inspection of
pipe-like structures, and their wave-propagation characteristics have also been
extensively studied by the Non-destructive Evaluation (NDE) and Structural Health
Monitoring (SHM) communities [1]-[4]. The classic linear three-dimensional theory of
elasticity was employed to model the propagation of harmonic waves in composite
cylinders. It can be noticed that the continuity conditions at the interface were further
utilized since the interface between the layers was considered as perfect, i.e., continuity
of displacement and traction. However, in practical applications, it is still hard to
guarantee interfacial perfection even though adopting advanced welding technology for
interface bonding. In addition, the interfacial imperfections may evolve into a more
serious scenario and even endanger the integrity of the entire structure. Therefore, the
investigation of the influence of imperfect interface on the torsional wave features
becomes necessary and meaningful. Many researchers have spared efforts to investigate
the dispersion curves of torsional waves in bi-material cylinders with imperfect interface
conditions. Berger et al. modified the standard perfect-interface condition by
introducing the displacement jump between the core and the cladding [5]. Based on this
pioneer’s work, the effect of the initial stresses on torsional wave dispersion curves was
further studied [6, 7]. In this study, a composite hollow cylinder is considered, and it is
assumed that the interface between the inner and outer tubes is imperfect.

This paper is arranged as follows. The spring interface model is initially formulated
to introduce the interfacial imperfections into the frequency equation. The dispersion
curves with varying imperfect interface conditions are then presented. Subsequently, the
thickness effects of the outer tube are investigated and the computational results
considering various coating thicknesses are discussed. Finally, some conclusions are
given.

SPRING INTERFACE MODEL FORMULATION

Let (r,0,z) be cylindrical polar coordinates. We consider a composite hollow
cylinder shown in Figure 1. The cylinder consists of a hollow, r <c , an inner tube,
c<r<a, and an outer tube, a<r <b. It is assumed that both tubes are made of
linearly elastic materials, noted as material 1 and 2, respectively. The corresponding
material properties and geometries of the cylinder are accordingly presented in TABLE
| and TABLE II.

Figure 1. A composite hollow cylinder.



TABLE |I. MATERIAL PROPERTIES OF THE CYLINDER

. Young’s modulus E C Density p
Materials (GPa) Poisson’s ratio v (glem?)
Material 1

(Zircaloy-4) 99.3 0.37 6.56
Material 2
(Chromium) 279 0.21 7.19
TABLE Il. GEOMETRIES OF THE CYLINDER
Inner tube radius a Outer tube radius b Hollow radius ¢
(mm) (mm) (mm)
11 11.1 10

For torsional waves, the only non-zero displacement component is the tangential
displacement v, and V itself should be independent of @. The governing equation in
polar coordinates is given by [8]
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Hooke’s law relates the stresses o,, and o,, to V as
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Making use of Eq. (2) into Eqg. (1) gives
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where ¢? = /% denotes the speed of shear waves in an infinite domain.
For waves propagating in the positive z-direction, which can be formulated as
v(r,z,t) =V (r)e't (4)
where i stands for «/——1 k and o are real. Then, substituting Eq. (4) into Eg. (3),
which renders
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This is Bessel’s function of order one. Its solutions depend on the sign of o’ —k’c?,
which can be defined as

Z,=J,W, =Y,,q=4(o/c) -k* & >k’
Z, = ("1 W, =K, q=1/k’—(0/c)’ & <k’c*
where J, and Y, are Bessel functions and I, and K are modified Bessel functions.
Thus, the appropriate solution of Eq. (5) takes the form of [5]
v=[q"AZ,(ar)+ab*BW,(qr) |e'* (7)
where A and B are arbitrary constants; Z;(x) =—Z2,(x) and W,(x) =-W,(x). And

we can use the expression above to indicate quantities in the inner and outer tubes with
subscripts 1 and 2, respectively. The displacement can be expressed as

(6)



[ 6 AZ,(qr) + g’ BW, (q,r) [V, c<r<a
V(I’,k = (8)

[0 AZ,(,1) +6b*BW,(,r) |e' ©,a<r<b’
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Boundary and Interface Conditions

With reference to Figure 1, now we need to enforce the boundary and interface
conditions to the formulations. The traction-free boundary conditions should be applied
on both inner and outer surfaces as

o,,(c)=0and o,,(b)=0. (10)

The imperfect interface conditions often involve the distinction of displacements
and tractions between the two contact surfaces [9]. And for most numerical models,
these quantities on different sides of interfaces are assumed to be linearly related with
each other. In this study, the imperfect interface is considered and modeled by a linear
spring interface model. The interfacial tractions are continuous across the interface, and
the displacement jump is proportional to the tangential shear stress acting on the surface.
An interfacial spring compliance constant is introduced to represent the interfacial
imperfections, denoted as » . Therefore, the interface conditions can be illustrated as

op@)=0,(@) (11)
and
(@)
H .
It should be noted that the perfect interface condition would be recovered when y =0.

v(@@')-v(a)=ya (12)

Frequency Equation for Dispersion Curves Calculation

The torsional wave dispersion curves can be determined by combining the
displacement and stress equations with the boundary and interface conditions.
Substituting Eq. (2) and Eg. (8) into Eq. (10), yields

Alzz (qlc) + (qla)2 B:sz (qlc) =0, (13)
AZ,(q,b) +(q,b)*B,W,(q,b) =0. (14)
From the continuity condition of traction from Eq. (11)
(:ul/:uz ) [ A122 (qla) + (qla)2 Blwz (qla)] - Azzz (an) - (qzb)2 Bzwz (qza) = 0 . (15)
In terms of the displacement jump interface condition by Eq. (12), it turns out as
(qlb)il A [Zl(qla) —rgaz, (qla)] - (qzb)il AZ,(d,2)
_(qlb)il (qla)2 Bl [Vqlawz (qla) _Wl (qla)] - BZquwl (qza) =0
Egs. (13)-(16) provide four equations in the four unknown constants, A, A,, B,, and

(16)



B, . In matrix form, the system of equation can be expressed as

Db=0,b=(A,A,B,B,) . (17)
Once the eigenvalue problem of Eq. (17) is solved, one will have the dispersion
relationship between k™ and k, or k,, where k™ is the eigenvalues of Eq. (17).

Further, the eigenvector b can also be solved up to a constant amplitude. By
normalizing it, one can have
b™-b' =1, (18)

where the asterisk represents complex conjugate; the superscript T means the transpose
operation. Note that all components of b are known in terms of material parameters,
the given frequency @, and the corresponding wavenumber k .

Finally, for a nontrivial solution, we can identify the frequency equation for
dispersion curves calculation as

detD=0. (19)
We have determined the dispersion curves with normalized frequency,
Q, =k, (b-a) (20)
as a function of normalized axial wavenumber
E=k(b-a), (21)

for a given value of the interfacial spring compliance constant 5 .

DISPERSION CURVES WITH VARYING INTERFACE CONDITIONS

In this section, we will present the computational results considering different
interface conditions., i.e., ¥ =0, y=0.1, y=0.5, and y=1. Figure 2 shows the
dispersion curves for the second mode and Figure 3 displays the third mode. It should
be noted that the wave features of the first torsional mode are identical regardless of the
interface conditions. The detailed demonstration can be found in Ref. [5]. With the
increment of interface spring compliance, the modal frequency decreases dramatically,
especially at the small values of wavenumber. On the other hand, the influence of

interfacial imperfections fades when it comes to larger values of & as all the dispersion
curves gradually convergence.
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Figure 2. Dispersion curves for the second mode in a composite hollow cylinder.



The torsional waves for the third mode exhibit similar characteristics to the second
mode. When the imperfect interface starts to emerge, the modal frequencies obviously
drop in comparison with the perfect-interface case. It means that the variation of
resonant frequencies of the third mode can serve as a competitive candidate to predict
the appearance of interfacial imperfects. On the other hand, with the spring compliance
continuing to increase, its influence on the resonant frequency fades. In addition, one

corner at & =0.22 can be noticed in the dispersion curve for y =1.
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Figure 3. Dispersion curves for the third mode in a composite hollow cylinder.
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Figure 4. Normalized frequency VS interfacial spring compliance at fixed wavenumber for the second
mode.

Another approach to determine the effects of imperfect interface is analyzing the
dispersion curves with respect to interfacial spring compliance by fixed wavenumber.
Figure 4 illustrates the numerical results for the second mode. It can be observed that
the interfacial imperfections exert a greater influence on the modal frequency at the
small wavenumbers. Furthermore, all the curves seem to approach asymptotic values
when y — o . It can be inferred that the asymptote should be the non-dispersive first

modes in the cylinder.



THICKNESS EFFECT

For a composite hollow cylinder, the outer tube is expected to functionalize as the
coating layer to avoid the corrosion of air and water. Its thickness may experience a
constant decrease in the service process. Therefore, this study further investigates the
thickness effect on the torsional wave features considering imperfect interface
conditions.

To quantify the varying thicknesses, we introduce non-dimensional parameters as

= b-a _ ¢ - = _
h=T,c=g,k=ka,kj:kja,qj:qja. (22)
Thus, Egs. (13)-(16) can be rewritten as
Aizz (qle) + qlz Blwz (qlé) =0 (23)
- o _ = 2 _ —
AZ,[G,@+h)]+[q,a+h) ] BW,[g,@+h)]=0 (24)

(/1) AZ,(@) +G2BW, @) ]~ AZ, @) -[G,@+M) ] BW,@,)=0  (25)
[a.0+M ] Alz@) -raz.@)]-[Ra+M) ] AZ®@,)

o _ . (26)
(@@ )] @78, [yaW, (@) -W,(@)] - B,[ &, @+ JW,(@,) =0
Using Taylor series expansions at h=0 up to the first order by Mathematica as,
o J,[q,@+h) ]~ J3,(q, +[2J (q,) —q233 (@) ]h,k? >k
Z,|q,(+h)]= . _ o, @
L[ G@+h) |~ 1,(a,)+[21,(,)+T15 () |7k} <k
o q@A+h) | =Y, (@) +[ 2Y,(F,)-a,Y:(a,) [h.k = k?
W, [ g,(1+h) = Kl I~ R v
K,[a,@+h)]~K, (%) [ZKZ ( )] k2 <k
(1+h)?~1+2h,(1+ H)* ~1-h. (29)
Therefore, by only retaining the linear terms, Egs. (24)-(26) can be formulated as
AAZ,(T,)+[22,(0,) - 5,2, (T,) ]h} 0

+7,7B, {w2 (@) +[ AW, (@) - W, (T,) ] ﬁ} =0
(/1) AZo (@) + G BW, (@) |- AZ,(6,) -G, (1+20 ) BW,(@,) =0 (31)

0, " 1-h)A[Z,(@) - 78Z,(@)] -7, 1-h)AZ,(T,)
G, (1-N)(@)° B, [ 1AW, (q,) ~W,(a,)]- B, [ @, 0+ ) W,(q,) =0

When h — 0 (without the outer tube), Egs. (30)-(32) render
AZ,(T,)+0,°BW,(T,)=0 (33)
(,ui/ﬂz )[Aizz(ql) + qlz BW, (ql)] -AZ, (qz) - qzz B,W, (C_Iz) =0 (34)
'A[Z,(@) - 782, @)] -8 AZ(,)

3,8, [7GW, (@) -W,(@,)] - B,3W,(@,) =0

Therefore, Egs. (33)-(35) can be utilized to calculate the wave-propagation features in
a hollow cylinder without the outer coating layer.

(32)

(35)



Dispersion Curves with Varying Coating Thicknesses

In order to compare the dispersion curves regarding with various coating
thicknesses, three cases are selected, i.e., h — 0 (without coating layer case),

h =1/1100 (reduced coating thickness case), and h =1/110 (composite hollow
cylinder condition). Figure 5 and Figure 6 show the computational results for the second
and third modes, respectively.
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Figure 5. Dispersion curves for the second mode with different coating thicknesses.
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Figure 6. Dispersion curves for the third mode with different coating thicknesses.

It can be noticed that the modal frequency increases with the coating thickness
decreasing, especially for the small values of wavenumber. In other words, for the fixed
wavenumber, torsional waves in the thicker-coating cylinder would propagate slower
than those in the thinner one. Thus, we can take advantage of the changes to wave
velocities to predict the variation of the coating thickness. Besides, if a composite
hollow cylinder completely loses its outer tube, the wave-propagation features will not



be affected by the interfacial imperfections. This aspect can be reflected on the
superposition of the dispersion curves when h — 0.

CONCLUDING REMARKS

This paper presented a systematic investigation of torsional wave propagation in a
composite hollow cylinder considering imperfect interface conditions. The spring
interface compliance was utilized to describe the interface imperfections. It was found
that the interfacial imperfections had a great influence on the dispersion curves within
the small wavenumber ranges. In addition, the modal frequencies increased with the
thickness of the outer tube declined. These wave features may help develop effective
NDE and SHM methodologies for the inspection of composite hollow cylinders.
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