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ABSTRACT

With increasing adoption of metal additive manufacturing (AM) in manufacturing,
detecting faults in the printing process has the potential to reduce waste from failed prints
and streamline the production process. To increase robustness of anomaly detection, a
statistical method of detecting faults from melt pool images is presented. This method
uses parametric identification of 1D compression of melt pool images to build a nominal
predictive model. Nominal melt pools result in residuals that are Gaussian white noise
processes, whereas anomalous melt pools will not follow this distribution. Detection is
performed through statistical comparison of incoming data with a nominal reference
genuerated on sparse data. This approach successfully applies statistical time-series meth-
ods to detect anomalous melt pools in a metal AM process.

INTRODUCTION

Identifying faults in a metal additive manufacturing (AM) process is a critical step
in incteasing adoption of the technology. Metal AM processes are prone to faults, fre-
quently stopping the print, or resulting in products with inadequate physical proper-
ties [1]. Among the methods that are used to monitor the process, one common technique
is through the imaging of the melt pool formed by the laser sintering powder material
together [2]. This melt pool image reflects the dynamics of the system, as its shape
and size correspond to the quality of the sinter [3]. Furthermore, several faults directly
appear within these images, motivating its tse for in-situ fault detection.

Most detection approaches focus on image classification, matching melt pool images
with known datasets of anomalous signals [4]. These methods use neural network (NN)
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models, which require large, labelled datasets. The data collection process is slow for
AM and may not account for all potential faults. Furthermore, these methods do not
incorporate the effects of geometry into the detection process by inspecting images in-
dependently. The raster chosen for the cross-sectional layers affects the melt pool signal
and microstructure of the print, altering the melt pool image sequence without induc-
ing fault [5,/6]. To detect these geometry-based effects, time series methods can be used,
such as in [7]], where time series data was used to detect voids in metal AM printed parts.
However, this approach uses a NN and requires a large, labelled dataset.

Incorporating the effects of geometry into detection capabilities is possible by ex-
amining the time series, as explained in prior work [8,9]. The melt pool image time
series comprises pertinent print geometry information, however few methods explore
this signal for fault detection [[10]]. Furthermore, to reduce reliance on labeled datasets,
a detection methodology that statistically determines the closeness of sample data to a
nominal baseline can be used. Statistical time series approaches can increase the de-
tection capabilities by incorporating geometric properties into the nominal model while
lessening the data requirement [11]].

The goal of this work is to establish a statistical method of detecting faults in a metal
AM process by modeling a time series of compressed 1) melt pool images. For a laser
powder bed fusion (LPBF) process, the major axis of a fit ellipse on the melt pool is used
to reduce image dimensionality. The major axis corresponds to melt pool size along the
print direction, defining the shape simply while reducing effects from varying scan paths.
Other compression metrics can be used (as in prior work [8,9]), although anomalies that
alter melt pool shape distinctly appear in the chosen time series. An AutoRegressive
(AR) model predicts the time series, modelling the geometric properties of the raster. To
perform detection, the residuals derived from the model error are used. These residuals
will naturally be Gaussian, as the melt pool size is typically Gaussian, with fluctuations
from the periodic raster.

Using these residuals, we can use well-defined statistical methods [[12] to determine
how well the residuals of any print layer conform to the expected nominal behavior.
Faults will result in dissimilar residuals, as the nominal AR model will not be able to
remove the anomalous response from the residuals. Furthermore, the reference nom-
inal parameters can be determined from only one layer, reducing the quantity of data
necessary for detection.

The main contributions of this study are:

1. An application of an AR model to predict the compressed melt pool time series
from sparse data (one test layer per raster pattern).

2. The implementation of a statistical detection methodology for metal AM using a
time series model. The detection method is based on the expected normal distri-
bution of the model residuals and does not require labels to detect anomalies.

EXPERIMENTAL SETUP

Melt pool images are obtained in-situ by means of a coaxial near infrared (NIR)
camera. This camera obtains 64 x 64 pixel greyscale images at a rate of 2 kHz. The
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Figure 1. Sensor configuration (left) and chosen raster patterns (right). A coaxial camera monitors the
melt pool during the printing process. Three raster patterns are chosen to construct a 2 x 4cm rectangular
prism. The raster patterns are composed of lines alternating directions, resulting in “’turnaround” locations
along the edges. These locations have high energy deposition, inducing periodic increases in the melt pool
size dependent on the raster interval.

camera arrangement is depicted in Figure [I] and is identical to prior work [8,[9]. The
coaxial camera is able to record the melt pools along this path through the reflection of
the melt pool through the scanner, capturing the melt pool image regardless of scanner
position.

The dataset consists of 50 layers printed of a 2 x 4cm rectangular prism. The scanner
follows 3 raster paths to sinter cross-sectional layers, illustrated in figure[T} 90°, 45°, and
0° degrees, corresponding to the short, diagonal, and long directions, respectively.

The melt pool size is quantified by taking the major axis of the ellipse formed by the
melt pool image, as shown in figure [2] The ellipse is estimated for the silhouette of the
image with pixel values above a threshold. For this work, the threshold was chosen to be
pixels with values of at least 50 out of the maximum 255, although other thresholds can
be chosen. This melt pool length measurement forms the 1D signal used for modeling
and detection.

Fluctuations in the melt pool length arise from the geometric periodicity. At loca-
tions of dense raster patterns (such as at spots where the laser path turns back on itself),
the local energy density will increase, consequently increasing the melt pool size. This
geometric effect is deterministic, depending on the chosen raster pattern and can thus be
modeled. For nominal images, as illustrated in figure 2] the major axis will follow the ge-
ometric periodicity, with few deviations from the expected size. In contrast, anomalous
melt pools will experience greater variance, and the model will not be able to capture
this behavior well.

The time series data was filtered through a low pass filter (cutoff frequency 255H z)
to remove high frequencies, as geometry-based system dynamics occur at frequencies
below this threshold. The dataset was down sampled to 1kH z to reduce AR model
order. Each layer takes approximately 5.5 seconds to print, yielding about 5500 samples
per layer (after down sampling).
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Figure 2. Sample melt pool images with ellipse shape approximation. The major axis of the ellipse
approximation is marked across the melt pool in red. Healthy (Top) and unhealthy (middle) melt pools
exhibit different sizes. The major axis length (bottom) follows a normal distribution, with anomalous
signals varying from nominal.

TIME SERIES MODELING AND STATISTICAL DECISION MAKING

A statistical hypothesis test is implemented to detect faults by comparing the distribu-
tion of AutoRegressive (AR) model residuals to that of known nominal data. Under the
null hypothesis, the AR model will capture the effects of geometry, and the residuals will
be independent and identically distributed (iid) random variables with nominal variance
o2,. In the event of an anomaly, the null hypothesis will not hold and the residual dis-
tribution will exceed the nominal, declaring a fault. This method has been implemented
successfully in other applications [|12].

The linear time invariant AR model is used for is simplicity, however time-varying
models can be used for raster patterns that induce time-varying behavior in the time
series. Investigation of these other modeling techniques is the subject of future work.

AR Model

The AR model of order na is of the following form [13]:

ylt]+ > ai-ylt —i] =eft]  e[t] ~ iidN(0,07) (1)

i=1

with normalized discrete time ¢ = 1, ..., N. Absolute time is t, = T(t—1) with sampling
time 7. e[t] is the 1-step model residual sequence that is expected to be a independent
and identically distributed (iid), white, Gaussian, zero mean sequence with variance

o?. This is indicated by the symbol A (-, ) with the respective mean and variance.

e
Parameters a1, as, ...a,, are estimated by minimization of a least squares fit [13]]. Model
selection is achieved by selecting a model order na with minimal Bayesian information

criterion (BIC) when fitting AR models of increasing order to nominal layers.



For nominal data, the residuals are expected to be iid normally distributed with a
mean of zero. The variance of the residuals are estimated for /V samples as:

6 = %Zew 2)

Statistical Hypothesis Test
Detection is based on the following binary hypothesis test:

Hy: 02 =02, Null Hypothesis - Healthy Signal

00
H, : 02 < o2, Alternative Hypothesis - Anomalous Signal ©)

For nominal layers, the AR model is accurate, and the variance of the residuals e,,[t]
achieve a minimum value, 02,. Sample signals, when driven through the AR model,
result in residuals e,, [t] with variance ¢2,. Under the null hypothesis, these residuals
eou[t] will be like the nominal residuals e,,[t|, iid zero mean Gaussian with variance
o2,. Anomalous signals, when driven through the AR model, will yield residuals with
variance above the nominal.

We form a test statistic to formalize detection using the variance estimation for test
variance 62, and nominal variance 62,. Nominal variance 2, is estimated using Equa-
tion [2| from one set of nominal layer residuals e,[t],¢ = na, ..., N,. Sample variances
62, are estimated from a moving window M with M — 1 overlapping samples across
the layer residuals e,,[t],¢ = na,...,N,. This becomes a variance vector of length
N, — (M — na) + 1 across the layer corresponding to times ¢t = M + na, ..., N,,. The
variances each follow a central x? distribution (as a sum of iid normal random vari-
ables), and thus the ratio follows a f distribution with degrees of freedom (M, N, — na)
for model order na. M, N, correspond to the number of samples used to estimate o2,

and o2 , respectively. The statistical threshold for a type I risk level («) is then:

00’

~2

F =2~ f(M,N,—na)
F < fi_o(M, N, — na) H, accepted - Nominal Signal “)
Else H; accepted - Anomalous Signal

FAULT DETECTION PERFORMANCE

One AR model for each raster pattern was selected as the nominal model. To choose
the best model order, the order with minimum Bayesian information criteria (BIC) was
selected. The chosen model orders for each raster pattern are illustrated in figure [3]
The orders chosen are 95,106, and 106 for the short, diagonal, and long directions,
respectively. Each AR was fit using one nominal layer (5500 samples).

The residuals for six sample layers (two per raster direction) are presented in Figure
In all raster directions, the nominal layers (top rows) remain consistent to the expected
mean of 0, whereas anomalous layers (bottom rows) exhibit peaks and wider variances
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Figure 3. BIC curves and chosen model order (magenta x) for each raster pattern (Short, Diagonal, and
Long, from left to right). Model orders of 95,106, and 108 were chosen for the listed raster patterns,
respectively. One model was used for each raster pattern to best capture the geometry-based effects.
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Figure 4. Nominal (top row) and anomalous (bottom row) residuals of sample layers for each raster
direction. Model residuals (left) are white for nominal data. The ACF (center) visualizes the whiteness
of the residuals. The histogram (right) shows the distribution of the data. Anomalous data has a distinct
distribution compared to nominal.
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Figure 5. Baseline variances of model residuals generated by filtering layer signals through the baseline
AR model (separated by raster direction). The healthy reference was chosen to be approximately the mean
of nominal variances.

at fault locations. Accordingly, the nominal layers have white residuals, as no anomalies
occur within these layers. The nominal model is predicting the geometric effects of the
raster, removing the periodicity and leaving the residuals white. In contrast, the anoma-
lous layers have residuals with a clear periodicity (non-zero autocorrelation function).
This implies that irregular melt pool sizes occur within this layer, which is indicative of
an anomaly. This can be seen in the corresponding histogram where anomalous layers
have a distinct distribution compared to the nominal layer.

We quantify the deviation of the residuals by the variance. For nominal models, the
residuals will have a lower variance as seen in the previous figures. As anomalous signals
have non-white residuals, the variance will be higher for layers with anomalies. We can
then use equation [3] and [ to formalize this detection criteria. We choose a reference
nominal variance o2, by first inspecting the variance of nominal models. This can be seen
in Figure[5] where a nominal layer for each raster pattern is chosen to form the reference
variance. We choose a nominal layer with a variance similar to the mean to reduce
sensitivity of the detection method. If the minimum variance is chosen, some nominal
layers may result in f-statistics higher than the statistical threshold. Furthermore, the
diagonal raster direction exhibits a higher variance than the other two directions, as the
raster is composed of varying scan line lengths (refer to Figure [I). Consequently, the
signal is not as well represented by an AR model, as some time-varying behavior occurs
at the start and end of the layer rasters. This can be resolved with time varying models,
which is the subject of future work.

Example layers at o = 107° (type I error) and window size M = 300 are presented
in Figure [6] for all raster patterns. The short direction (left) has three example layers.
Nominal layer 33 (top) remains entirely below the statistical threshold. The anomalous
layer 15 (middle), has a large anomaly at 3 seconds, with an f-statistic nearing 5, cor-
responding to a variance 5 times the value of the nominal reference. Layer 24 (bottom)
also exhibits an anomaly at 1.5 seconds, surpassing the statistical threshold. Notably, the
remainder of layer 24 (after 3 seconds) is nominal, falling below the statistical threshold.

Results are similar for the diagonal layers presented in the center of Figure [6| For
the nominal layer 34 (top), the moving variance remains below the statistical threshold.
In contrast, anomalies surpass the threshold at anomalous locations in layers 16 and 28.
Similar results occur for the long direction (right). Nominal layer 35 is close to the
threshold, but below it, while anomalous layers 26 and 29 surpass the threshold.
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Figure 6. Moving variance for several test layers, short (right, green), diagonal (center, blue), and long
(left, yellow) directions with detection threshold o = 107 (type I error). Nominal layers 33, 34, and 35
(top) experience a low variance in the residuals compared to the anomalous layers 15, 16, and 26 (center).
These layers have f-statistics that indicate the peak variance is well above the nominal. Layers 24, 28, and
29 (bottom) have minor anomalies, with the majority of the layer nominal, below the detection threshold.

CONCLUDING REMARKS

This study successfully predicted the melt pool lengths with AR models trained on
one nominal layer. These model residuals were used to form a statistical test that cor-
rectly determined anomalous behavior for select faults. This research serves as an initial
demonstration of this statistical detection method applied to metal AM, although the
method is individually trained for each geometry and has difficulty with non-stationary
behavior. Future work will focus on a general model that conforms to several input ge-
ometries and integrates time-varying behavior. This removes geometric effects from the
print, standardizing detection for any geometry.
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