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ABSTRACT 
 

Health monitoring of civil structures via machine learning is a powerful approach 
to the early detection of any damage pattern. Besides structural damage, also 
environmental and operational variabilities are known to affect the inherent structural 
properties. Although the induced variations in the monitored properties are not harmful, 
their confounding influence can lead to economic and human losses. For these reasons, 
a novel unsupervised learning strategy is here proposed, aiming to properly account for 
the environmental effects on the structural modal frequencies. The offered solution is a 
non-parametric mixed learning strategy resting on hierarchical clustering, local non- 
negative matrix factorization, and Mahalanobis-squared distance (MSD). By means of 
the hierarchical clustering, training data consisting of modal frequencies relevant to the 
undamaged condition are subdivided into local clusters, which are then exploited in 
order to get rid of the environmental effects. The reconstructed data are finally used to 
train a non-parametric novelty detector based on the MSD, to obtain scores for decision 
making regarding the current state. To validate the proposed method, a set of modal 
frequencies of a steel arch bridge in its long-term monitoring has been considered; 
results show that the proposed methodology is effective in taking aside the 
environmental variability from the time history of the collected modal frequencies of 
the structure. 

 

INTRODUCTION 
 

Health monitoring of civil structures is of utmost importance in modern society, 
owing to their critical significance in our everyday life. It is therefore indispensable to 
avoid catastrophic events, such as partial or global collapses causing huge economic 
losses and human causalities. To prevent them, actions are needed to allow the prompt 
detection of a structural damage in its early stage. After having ascertained the 
occurrence of such a damage, one should next identify its location and quantify its 
severity, in order to make a decision on whether to repair or retrofit the damaged areas, 
or even replace the entire structural elements [1]. A structural health monitoring (SHM) 
project can be thus implemented to feature three main stages of early damage detection 
[2], damage localization [3, 4], and damage quantification [5]. 
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The prerequisites for the aforementioned stages of SHM include: (i) select a 
measurement technique; (ii) deploy sensors and record relevant data; (iii) define 
meaningful information brought by the measured data; and (iv) implement the SHM 
procedure via model-based or data-driven techniques. The first two steps pertain to the 
measurement science and sensing technologies [6]. The third step is termed feature 
extraction and plays a significance role in SHM. The fourth step exploits the information 
from the previous stage to properly implement the SHM strategy. Model-based SHM 
techniques usually rest on a numerical (finite element) model of the monitored structure, 
supplemented by the measured experimental data for model updating purposes [7]. In 
contrast, data-based SHM techniques take advantage of measured data only, in principle 
without any numerical model to be exploited for damage assessment. Hybrid solutions, 
trying to take advantage of the strengths of both the aforementioned approaches, have 
been recently proposed; interested readers can find thorough discussions in, e.g. [8, 9]. 

One of the widely-used and promising feature extraction methods for the SHM of 
large-scale civil structures is the operational modal analysis (OMA), which allows 
identifying properties like modal frequencies, mode shapes, and damping ratios when 
excitation forces are not recorded [10]. Due to the benefits of the data-based SHM, as 
compared to the model-based one, machine learning (ML) has become the main tool to 
perform data analytics [11]. ML is a branch of artificial intelligence that aims at 
developing a computational and intelligent model, by exploiting training data to solve 
complex problems. Supervised learning and unsupervised learning are two different 
strategies in ML. In the SHM realm, fully labeled data are needed when a supervised 
learning strategy is adopted, including the features related to the damaged structural 
state; on the contrary, an unsupervised learning strategy exploits unlabeled data 
regarding the undamaged state only. Because the (un)availability of fully labeled data 
for real-world SHM, most of the developed proposals have focused so far on 
unsupervised learning schemes, especially when early damage detection is the target 
[12, 13]. 

A cooperative integration of OMA and unsupervised learning can lead to a 
promising method for early damage detection, see [14]. In this way, a set of modal 
frequencies identified from measured vibration data are exploited, and an OMA 
algorithm is defined to provide the training data; such a dataset is then fed into an 
unsupervised learner. When modal frequencies related to the unknown state of the 
structure are obtained from the current measurements, those are fed on their own into 
the trained digital model for decision-making: any deviation from the formerly set 
baseline is therefore indicative of damage occurrence. A big challenge in such a strategy 
is that structural damage is not the only cause of variations of the modal frequencies: in 
real-world scenarios, especially when bridges are involved, environmental and 
operational conditions affect the collected data too [15]. These conditions are in fact 
able to alter inherent physical properties of the structure, such as mass and stiffness, and 
thus change the structural response in a way similar to, or undistinguishable from what 
induced by damage. Accurate and sensitive data analytics solutions have to be adopted 
in the analysis. Hence, whenever the confounding influences by the environmental and 
operational variabilities show up, false positive and false negative errors can show up; 
these errors are finally related to possible economic and human losses, so that it becomes 
indispensable to get rid of such variability conditions [16]. 

Locally unsupervised mixed learning methods have been recently proposed to 
address this problem. These methods avoid to handle the training dataset as a whole, 



 

and take instead advantage of local information (namely, related to a portion of the 
sampling data) on the training space, and combinations of different unsupervised 
learning methods to address the issue linked to the confounding influences. In this 
regard, Entezami et al. [17] proposed an unsupervised meta-learning method that 
consists of a data segmentation via spectral clustering, and local damage detection based 
on the Mahalanobis-squared distance (MSD). Daneshvar et al. [18] developed a locally 
unsupervised hybrid learning method via Gaussian mixture to define the needed local 
information, and a discriminative reconstruction-based dictionary learning model to 
remove the environmental effects. Entezami et al. [19] also proposed a multi-task 
unsupervised learning method based on the density-based spatial clustering of 
applications with noise (DBSCAN) to remove outliers from the training data, spectral 
clustering to set the local information, and local empirical measures for anomaly 
detection. 

In spite of the achieved results and of the noteworthy performance in removing 
environmental and operational variabilities, a major limitation of these techniques is 
related to their parametric nature. In other words, some stages of these methodologies 
rest on parametric algorithms, whose hyperparameters must be estimated/set 
beforehand. Therefore, the main objective of this work is the proposal of a new 
unsupervised mixed learning method, within a non-parametric framework. The 
proposed method consists of three non-parametric algorithms: hierarchical clustering, 
to provide local subsets of the training data; local non-negative matrix factorization, to 
develop a subspace learning algorithm; and MSD, to allow novelty detection. To 
evaluate the performance of the proposed method, a set of modal frequencies of a bridge 
in its undamaged state is considered. Results show that the proposed method can 
effectively remove the environmental effects from the modal frequencies, so that 
reliable information can be next moved onto the decision-making stage.  

PROPOSED METHOD 

HIERARCHICAL AGGLOMERATIVE CLUSTERING 

A hierarchical clustering method is a non-parametric approach to subdivide 
unlabeled data into a hierarchy of clusters, called dendrogram. By means of this 
procedure, it is possible to represent the relationships between data in the clustering 
process, where clusters are arranged similar to a tree. Data clustering can be based on 
agglomerative (bottom-up) or divisive (top-down) algorithms: the former ones start by 
taking singleton clusters, each one containing one datum only, and keep merging two 
clusters at a time to build a bottom-up hierarchy; the latter ones start instead from all the 
data merged in a single macro-cluster, and then split it continuously into two groups in 
a top-down hierarchy. The main advantage of hierarchical clustering methods, as 
compared to the partition-based ones like k-means, k-medoids, fuzzy c-means, or 
Gaussian mixture, is the lack of a constraint in setting the number of clusters [20].  

The implementation of the hierarchical agglomerative clustering consists of three 
steps. Generally, the process starts by clustering individual data points in a singleton 
cluster, which is then continuously merged based on similarity, until when it forms one 
big cluster containing all the data points. First, a dissimilarity (distance) measure is 
defined and used to compute the distance between any pair of data points in the training 
data, to generate a distance matrix for all the data points to be represented at the bottom 



 

of the dendrogram. Second, the closest sets of the clusters are iteratively merged by 
using a linkage function to define the distance between two clusters, and the distance 
matrix is accordingly updated. The said linkage function exploits the distance measures 
generated in the first step, to determine the proximity of points to each other. Commonly 
used algorithms for linkage are based on single, complete, average, centroid, median, 
weighted, of Ward’s functions. As data points are paired into binary clusters, the newly 
formed clusters are grouped into larger clusters until a hierarchical tree is formed. Third, 
a strategy is defined to set where the hierarchical tree is cut. One can then prune branches 
off the bottom of the hierarchical tree and assign all the objects below each cut to a 
single cluster, leading to a partition of the data [20]. 

Let us suppose that 𝐗 ∈ ℝ!×# is the training matrix, containing 𝑛 vectorial feature 
points each of 𝑝 variables. In concrete terms and in relation to the modal-based SHM of 
civil structures, 𝐗 is a matrix of 𝑛 modal frequency samples from 𝑝 identified modes, 
so that the mentioned samples represent the training data. Using the weighted average 
distance as the linkage function, the hierarchical agglomerative clustering subdivides 𝐗 
into the two clusters 𝐂! ∈ ℝ"×$! and 𝐂% ∈ ℝ"×$", where 𝑟$ and 𝑟% denote the number of 
clustered features respectively belonging to the first and second clusters. The main 
reasoning behind handling two clusters only, departs from the real structural conditions. 
In fact, when the structure keeps its undamaged state, two types of features can be 
drawn: one is related to the undamaged state without the environmental and operational 
effects; the other pertains to the same state, with the environmental and operational 
effects instead included. Simply speaking, the hierarchical agglomerative clustering 
allows grouping the available undamaged features into the two groups. 

LOCAL NON-NEGATIVE MATRIX FACTORIZATION 

Non-negative matrix factorization (NMF) is a dimensionality reduction technique 
based on a low-rank approximation of the feature space [21]. The major purpose of this 
technique is the factorization of a matrix into two non-negative matrices. By means of 
these matrices, having defined a factor rank, it is next possible to reconstruct the entire 
original data. As reconstruction-based, output-only data normalization is the main 
unsupervised learning method to remove the environmental and operational variability 
conditions, NMF can be used to that purpose. Given the clustered feature sets 𝐂! and 𝐂% 
as well as a rank factor 𝑓, NMF provides the non-negative matrices 𝐖& ∈ ℝ"×' and 𝐇& ∈
ℝ'×$#, being 𝑙 = 1,2, to minimize the Frobenius norm ‖𝐂& −𝐖&𝐇&‖(%  handled as the root 
mean square error (RMSE). Moreover, the rank factor	𝑓 is simultaneously set by 
minimizing the said RMSE under these two conditions: (i) 1 ≤ f ≤ (p – 1) when p ≤ rl 
and (ii) 1 ≤ f ≤ (rl – 1) when p>rl. With the non-negative matrices 𝐖& and 𝐇&, the 
clustered features can be reconstructed via: 

𝐂1& = 𝐖&𝐇&                                                       (1) 

The reconstructed clusters 𝐂1$ ∈ ℝ!×'! and 𝐂1% ∈ ℝ!×'" then represent the output of 
the second step of the proposed method. 

MAHALANOBIS-SQUARED DISTANCE 

Novelty detection is the unsupervised learning stage for feature analysis. In fact, the 
unsupervised learner or novelty detector is trained by the means of unlabeled data, to 



 

finally make a decision on the test data regarding the current, unknown state. If the test 
data belongs to an abnormal situation characterized by a damaged structural state, the 
novelty detector should immediately detect it. In this work, a non-parametric novelty 
detector based on the MSD is adopted to investigate the evolution of the model output, 
namely of the novelty scores, and also understand whether the environmental and 
operational effects are mitigated. 

Given the reconstructed features in {𝐂1$, 𝐂1%}, the parameters handled by the MSD-
based novelty detector are the mean vectors {𝛍$, 𝛍%} and the relevant covariance 
matrices {𝚺$, 𝚺%} of the reconstructed features. Each mean vector gathers 𝑝 elements, 
while each covariance matrix has dimensions 𝑝 × 𝑝. To define the novelty indices, each 
training feature is exploited in the following form: 

D)(𝐱*) = min 01𝐱* − 𝛍+3
,𝚺+-!1𝐱* − 𝛍+35                            (2) 

where 𝑖 = 1, . . , 𝑛 and 𝑗 = 1,2. In the testing (inspection) period, the vectors 𝐱( are 
substituted in Eq. (2) by the new received test vectors 𝐳), being 𝑘 = 1, . . , 𝑚, as follows: 

D*(𝐳)) = min BC𝐳) − 𝛍+E
,𝚺+-$C𝐳) − 𝛍+EF                           (3) 

For 𝑚 test features, 𝑚 novelty indices can be obtained as well. Accordingly, if the 
test features belong to the damaged state of the structure, there should be a clear distance 
or difference between the novelty indices relevant to these features and the novelty 
indices obtained for the training features, which are related to the undamaged condition. 
On the contrary, in case of test features belonging to the undamaged state, the 
corresponding novelty indices should be similar to those pertinent to training. 

EXPERIMENTAL INVESTIGATION: THE KW51 BRIDGE 

To assess the performance of the proposed method, the steel arch bridge called 
KW51 [22] is here considered, see Figure 1. This structure is a railway bridge that 
connects Leuven and Brussels in Belgium, along the railway line L36N. The bridge is 
115 m long and 12.4 m large. Since 2 October 2018, the bridge is equipped with an 
SHM system consisting in vibration and environmental sensors, to acquire acceleration 
time histories and environmental data too. The time histories of the modal frequencies 
between 2 October 2018 and 15 May 2019 are here considered, with reference to the 
normal condition; therefore, the effects of environmental factors on those modal 
frequencies are evaluated next.  

An automated OMA was implemented by Maes and Lombaert [23], to identify the 
modal properties of the bridge including the relevant natural frequencies. The automated 
OMA allowed to yield information in time concerning 14 vibration modes. To avoid 
issues related to missing information regarding some of those modal features, only the 
modes 6, 10, 12, and 13 are here considered.  



 

 

Figure 1. The KW51 Bridge. 

 
Figure 2. Time evolution of the modal frequencies of the KW51 Bridge. 

 

Figure 3. Evolution of novelty indices related to the training (black points) and testing (red points) 
data, as provided by: (a) the proposed method, (b) the direct use of the MSD-based novelty detection 

without data clustering and feature reconstruction. 

The total number of samples in the time histories of the modal frequencies of the 
undamaged state are 2688: Figure 2 shows the said histories of the dynamic features. 
As can be seen, environmental effects show up as sudden jumps in the range of samples 
1345-2017. Since such variability in any novelty detector provides a footprint similar to 
damage, the aim of the proposed methodology is to remove the aforementioned sudden 
jumps in the time histories. Therefore, the existence of two variability forms including 
the usual and sudden ones, provides a rationale to ascertain the accuracy of the two 
clusters adopted for the hierarchical clustering. 

All the features in the time series of Figure 3 are divided into training and testing 
datasets, with a ratio of 75% : 25%. In the first step, the training data 𝐗 ∈ ℝ.×%/$0 are 
partitioned into the two clusters C1∈ℝ4×1979 and C1∈ℝ4×37, so resulting into r1=1979 and 
r2=37. The clustered features are then exploited by the local NMF methodology, to 
reconstruct them. Regarding this stage of the analysis, on the basis of the first condition 



 

needed for the rank factor, the parameter f can take a value between 1 and 3; its optimal 
value is selected as the one providing the minimum RMSE value. The result is shown 
in Figure 3(b), where the optimal rank for the first and second clusters are identified as 
3 and 2, respectively. The clusters are then reconstructed to be adopted in the MSD-
based novelty detection stage. Figure 3(a) shows the corresponding time evolution of 
the novelty indices related to the training and testing data points. For a comparison, the 
same process is repeated by using the MSD-based novelty detection without prior data 
clustering and feature reconstruction, so by directly handling the training and testing 
matrices via the MSD. The results of this latter strategy are displayed in Figure 3(b). As 
can be seen, the proposed method succeeds in removing the environmental effects 
caused by the freezing air temperature: sudden jumps in the modal frequencies are no 
longer visible in the novelty indices furnished by the proposed method. The other way 
around, the said jump is still clearly visible in Figure 3(b). It can be thus concluded that 
the proposed method, thanks to its mixed and non-parametric properties, is perfectly 
able to deal with the confounding influences induced by the environmental variability. 
It also turns out to be superior to the classical MSD-based novelty detection one. 

CONCLUSIONS 

In this paper, a non-parametric mixed learning technique has been proposed, within 
an unsupervised learning strategy, to address the confounding effects caused by 
environmental and/or operational variability. The proposed method consists of the three 
steps of data clustering via the hierarchical agglomerative clustering, clustered feature 
reconstruction through local NMF, and novelty detection based on the MSD metric. 

The time histories of the modal frequencies of the KW51 Bridge have been adopted 
to evaluate the performance and effectiveness of the proposed method. The obtained 
results have demonstrated that the proposed method can effectively remove the 
environmental variability, for instance showing up as sudden jumps in the structural 
vibration frequencies caused by a freezing air temperature. This method has been also 
shown to outperform the classical MSD-based novelty detection technique. This 
conclusion has confirmed the proposed unsupervised mixed learning strategy, if based 
on an ad-hoc defined data clustering to deal with the said variability effects, can properly 
lead to robust SHM strategies. 

REFERENCES 

1.  Li, H. 2020. “Structural assessment of concrete cable-stayed bridge after replacement of closure 
segment: The service stage,” Pract. Periodical Struct. Des. Constr., 25(3): 04020023. 
2.  Giordano, P., Z. Turksezer, M. Previtali, and M. Limongelli. 2022. “Damage detection on a historic 
iron bridge using satellite DInSAR data,” Struct. Health Monit., 21(5): 2291-2311. 
3.  Entezami, A., H. Sarmadi, and C. De Michele. 2022. “Probabilistic damage localization by 
empirical data analysis and symmetric information measure,” Meas., 198: 111359. 
4.  Giordano, P. F., S. Quqa, and M. P. Limongelli. 2021. “Statistical Approach for Vibration-Based 
Damage Localization in Civil Infrastructures Using Smart Sensor Networks,” Infrastructures, 6(2): 
22. 
5.  Entezami, A., H. Shariatmadar, and A. Karamodin. 2019. “Data-driven damage diagnosis under 
environmental and operational variability by novel statistical pattern recognition methods,” Struct. 
Health Monit., 18(5-6): 1416-1443. 



 

6.  Wang, M. L., J. P. Lynch, and H. Sohn. 2014. Sensor Technologies for Civil Infrastructures: 
Applications in Structural Health Monitoring. Woodhead Publishing (Elsevier). 
7.  Cabboi, A., C. Gentile, and A. Saisi. 2017. “From continuous vibration monitoring to FEM-based 
damage assessment: Application on a stone-masonry tower,” Constr. Build. Mater., 156: 252-265. 
8.  Entezami, A., H. Sarmadi, and B. Saeedi Razavi. 2020. “An innovative hybrid strategy for structural 
health monitoring by modal flexibility and clustering methods,” J. Civ. Struct. Health Monit., 10(5): 
845-859. 
9.  Kim, Y., J.-c. Park, and S. Shin. 2018. “Development of a hybrid SHM of cable bridges based on 
the mixed probability density function,” J. Civ. Struct. Health Monit., 8(4): 569-583. 
10.  García-Macías, E. and F. Ubertini. 2020. “MOVA/MOSS: Two integrated software solutions for 
comprehensive Structural Health Monitoring of structures,” Mech. Syst. Sig. Process., 143: 106830. 
11.  Flah, M., I. Nunez, W. Ben Chaabene, and M. L. Nehdi. 2021. “Machine Learning Algorithms in 
Civil Structural Health Monitoring: A Systematic Review,” Arch. Comput. Methods Eng., 28(4): 
2621-2643. 
12.  Entezami, A., H. Shariatmadar, and S. Mariani. 2020. “Early damage assessment in large-scale 
structures by innovative statistical pattern recognition methods based on time series modeling and 
novelty detection,” Adv. Eng. Softw., 150: 102923. 
13.  Entezami, A., H. Sarmadi, B. Behkamal, and S. Mariani. 2021. “Health Monitoring of Large-
Scale Civil Structures: An Approach Based on Data Partitioning and Classical Multidimensional 
Scaling,” Sensors, 21(5): 1646. 
14.  Chalouhi, E. K., I. Gonzalez, C. Gentile, and R. Karoumi. 2017. “Damage detection in railway 
bridges using Machine Learning: application to a historic structure,” Procedia Eng., 199: 1931-1936. 
15.  Gentile, C., M. Guidobaldi, and A. Saisi. 2016. “One-year dynamic monitoring of a historic tower: 
damage detection under changing environment,” Meccanica, 51(11): 2873-2889. 
16.  Wang, Z., D.-H. Yang, T.-H. Yi, G.-H. Zhang, and J.-G. Han. 2022. “Eliminating environmental 
and operational effects on structural modal frequency: A comprehensive review,” Struct. Contr. 
Health Monit., 29(11): e3073. 
17.  Entezami, A., H. Sarmadi, and B. Behkamal. 2023. “Long-term health monitoring of concrete and 
steel bridges under large and missing data by unsupervised meta learning,” Eng. Struct., 279: 115616. 
18.  Daneshvar, M. H., H. Sarmadi, and K.-V. Yuen. 2023. “A locally unsupervised hybrid learning 
method for removing environmental effects under different measurement periods,” Meas., 208: 
112465. 
19.  Entezami, A., H. Sarmadi, B. Behkamal, and C. De Michele. 2023. “On continuous health 
monitoring of bridges under serious environmental variability by an innovative multi-task 
unsupervised learning method,” Struct. Infrastruct. Eng., In Press: 1-19. 
20.  Aggarwal, C. C. and C. K. Reddy. 2016. Data Clustering: Algorithms and Applications. CRC 
Press, Boca Raton, Florida, United States. 
21.  Berry, M. W., M. Browne, A. N. Langville, V. P. Pauca, and R. J. Plemmons. 2007. “Algorithms 
and applications for approximate nonnegative matrix factorization,” Comput. Stat. Data Anal., 52(1): 
155-173. 
22.  Maes, K. and G. Lombaert. 2021. “Monitoring Railway Bridge KW51 Before, During, and After 
Retrofitting,” J. Bridge Eng., 26(3): 04721001. 
23.  Maes, K., L. Van Meerbeeck, E. P. B. Reynders, and G. Lombaert. 2022. “Validation of vibration-
based structural health monitoring on retrofitted railway bridge KW51,” Mech. Syst. Sig. Process., 
165: 108380. 
 




