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ABSTRACT

Health monitoring of civil structures via machine learning is a powerful approach
to the early detection of any damage pattern. Besides structural damage, also
environmental and operational variabilities are known to affect the inherent structural
properties. Although the induced variations in the monitored properties are not harmful,
their confounding influence can lead to economic and human losses. For these reasons,
anovel unsupervised learning strategy is here proposed, aiming to properly account for
the environmental effects on the structural modal frequencies. The offered solution is a
non-parametric mixed learning strategy resting on hierarchical clustering, local non-
negative matrix factorization, and Mahalanobis-squared distance (MSD). By means of
the hierarchical clustering, training data consisting of modal frequencies relevant to the
undamaged condition are subdivided into local clusters, which are then exploited in
order to get rid of the environmental effects. The reconstructed data are finally used to
train a non-parametric novelty detector based on the MSD, to obtain scores for decision
making regarding the current state. To validate the proposed method, a set of modal
frequencies of a steel arch bridge in its long-term monitoring has been considered;
results show that the proposed methodology is effective in taking aside the
environmental variability from the time history of the collected modal frequencies of
the structure.

INTRODUCTION

Health monitoring of civil structures is of utmost importance in modern society,
owing to their critical significance in our everyday life. It is therefore indispensable to
avoid catastrophic events, such as partial or global collapses causing huge economic
losses and human causalities. To prevent them, actions are needed to allow the prompt
detection of a structural damage in its early stage. After having ascertained the
occurrence of such a damage, one should next identify its location and quantify its
severity, in order to make a decision on whether to repair or retrofit the damaged areas,
or even replace the entire structural elements [1]. A structural health monitoring (SHM)
project can be thus implemented to feature three main stages of early damage detection
[2], damage localization [3, 4], and damage quantification [5].
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The prerequisites for the aforementioned stages of SHM include: (i) select a
measurement technique; (ii) deploy sensors and record relevant data; (iii) define
meaningful information brought by the measured data; and (iv) implement the SHM
procedure via model-based or data-driven techniques. The first two steps pertain to the
measurement science and sensing technologies [6]. The third step is termed feature
extraction and plays a significance role in SHM. The fourth step exploits the information
from the previous stage to properly implement the SHM strategy. Model-based SHM
techniques usually rest on a numerical (finite element) model of the monitored structure,
supplemented by the measured experimental data for model updating purposes [7]. In
contrast, data-based SHM techniques take advantage of measured data only, in principle
without any numerical model to be exploited for damage assessment. Hybrid solutions,
trying to take advantage of the strengths of both the aforementioned approaches, have
been recently proposed; interested readers can find thorough discussions in, e.g. [8, 9].

One of the widely-used and promising feature extraction methods for the SHM of
large-scale civil structures is the operational modal analysis (OMA), which allows
identifying properties like modal frequencies, mode shapes, and damping ratios when
excitation forces are not recorded [10]. Due to the benefits of the data-based SHM, as
compared to the model-based one, machine learning (ML) has become the main tool to
perform data analytics [11]. ML is a branch of artificial intelligence that aims at
developing a computational and intelligent model, by exploiting training data to solve
complex problems. Supervised learning and unsupervised learning are two different
strategies in ML. In the SHM realm, fully labeled data are needed when a supervised
learning strategy is adopted, including the features related to the damaged structural
state; on the contrary, an unsupervised learning strategy exploits unlabeled data
regarding the undamaged state only. Because the (un)availability of fully labeled data
for real-world SHM, most of the developed proposals have focused so far on
unsupervised learning schemes, especially when early damage detection is the target
[12, 13].

A cooperative integration of OMA and unsupervised learning can lead to a
promising method for early damage detection, see [14]. In this way, a set of modal
frequencies identified from measured vibration data are exploited, and an OMA
algorithm is defined to provide the training data; such a dataset is then fed into an
unsupervised learner. When modal frequencies related to the unknown state of the
structure are obtained from the current measurements, those are fed on their own into
the trained digital model for decision-making: any deviation from the formerly set
baseline is therefore indicative of damage occurrence. A big challenge in such a strategy
is that structural damage is not the only cause of variations of the modal frequencies: in
real-world scenarios, especially when bridges are involved, environmental and
operational conditions affect the collected data too [15]. These conditions are in fact
able to alter inherent physical properties of the structure, such as mass and stiftness, and
thus change the structural response in a way similar to, or undistinguishable from what
induced by damage. Accurate and sensitive data analytics solutions have to be adopted
in the analysis. Hence, whenever the confounding influences by the environmental and
operational variabilities show up, false positive and false negative errors can show up;
these errors are finally related to possible economic and human losses, so that it becomes
indispensable to get rid of such variability conditions [16].

Locally unsupervised mixed learning methods have been recently proposed to
address this problem. These methods avoid to handle the training dataset as a whole,



and take instead advantage of local information (namely, related to a portion of the
sampling data) on the training space, and combinations of different unsupervised
learning methods to address the issue linked to the confounding influences. In this
regard, Entezami et al. [17] proposed an unsupervised meta-learning method that
consists of a data segmentation via spectral clustering, and local damage detection based
on the Mahalanobis-squared distance (MSD). Daneshvar et al. [ 18] developed a locally
unsupervised hybrid learning method via Gaussian mixture to define the needed local
information, and a discriminative reconstruction-based dictionary learning model to
remove the environmental effects. Entezami et al. [19] also proposed a multi-task
unsupervised learning method based on the density-based spatial clustering of
applications with noise (DBSCAN) to remove outliers from the training data, spectral
clustering to set the local information, and local empirical measures for anomaly
detection.

In spite of the achieved results and of the noteworthy performance in removing
environmental and operational variabilities, a major limitation of these techniques is
related to their parametric nature. In other words, some stages of these methodologies
rest on parametric algorithms, whose hyperparameters must be estimated/set
beforehand. Therefore, the main objective of this work is the proposal of a new
unsupervised mixed learning method, within a non-parametric framework. The
proposed method consists of three non-parametric algorithms: hierarchical clustering,
to provide local subsets of the training data; local non-negative matrix factorization, to
develop a subspace learning algorithm; and MSD, to allow novelty detection. To
evaluate the performance of the proposed method, a set of modal frequencies of a bridge
in its undamaged state is considered. Results show that the proposed method can
effectively remove the environmental effects from the modal frequencies, so that
reliable information can be next moved onto the decision-making stage.

PROPOSED METHOD
HIERARCHICAL AGGLOMERATIVE CLUSTERING

A hierarchical clustering method is a non-parametric approach to subdivide
unlabeled data into a hierarchy of clusters, called dendrogram. By means of this
procedure, it is possible to represent the relationships between data in the clustering
process, where clusters are arranged similar to a tree. Data clustering can be based on
agglomerative (bottom-up) or divisive (top-down) algorithms: the former ones start by
taking singleton clusters, each one containing one datum only, and keep merging two
clusters at a time to build a botfom-up hierarchy; the latter ones start instead from all the
data merged in a single macro-cluster, and then split it continuously into two groups in
a top-down hierarchy. The main advantage of hierarchical clustering methods, as
compared to the partition-based ones like k-means, k-medoids, fuzzy c-means, or
Gaussian mixture, is the lack of a constraint in setting the number of clusters [20].

The implementation of the hierarchical agglomerative clustering consists of three
steps. Generally, the process starts by clustering individual data points in a singleton
cluster, which is then continuously merged based on similarity, until when it forms one
big cluster containing all the data points. First, a dissimilarity (distance) measure is
defined and used to compute the distance between any pair of data points in the training
data, to generate a distance matrix for all the data points to be represented at the bottom



of the dendrogram. Second, the closest sets of the clusters are iteratively merged by
using a linkage function to define the distance between two clusters, and the distance
matrix is accordingly updated. The said linkage function exploits the distance measures
generated in the first step, to determine the proximity of points to each other. Commonly
used algorithms for linkage are based on single, complete, average, centroid, median,
weighted, of Ward’s functions. As data points are paired into binary clusters, the newly
formed clusters are grouped into larger clusters until a hierarchical tree is formed. Third,
a strategy is defined to set where the hierarchical tree is cut. One can then prune branches
off the bottom of the hierarchical tree and assign all the objects below each cut to a
single cluster, leading to a partition of the data [20].

Let us suppose that X € RP*" is the training matrix, containing n vectorial feature
points each of p variables. In concrete terms and in relation to the modal-based SHM of
civil structures, X is a matrix of n modal frequency samples from p identified modes,
so that the mentioned samples represent the training data. Using the weighted average
distance as the linkage function, the hierarchical agglomerative clustering subdivides X
into the two clusters C; € RP*™ and C, € RP*"2, where 1; and 1, denote the number of
clustered features respectively belonging to the first and second clusters. The main
reasoning behind handling two clusters only, departs from the real structural conditions.
In fact, when the structure keeps its undamaged state, two types of features can be
drawn: one is related to the undamaged state without the environmental and operational
effects; the other pertains to the same state, with the environmental and operational
effects instead included. Simply speaking, the hierarchical agglomerative clustering
allows grouping the available undamaged features into the two groups.

LOCAL NON-NEGATIVE MATRIX FACTORIZATION

Non-negative matrix factorization (NMF) is a dimensionality reduction technique
based on a low-rank approximation of the feature space [21]. The major purpose of this
technique is the factorization of a matrix into two non-negative matrices. By means of
these matrices, having defined a factor rank, it is next possible to reconstruct the entire
original data. As reconstruction-based, output-only data normalization is the main
unsupervised learning method to remove the environmental and operational variability
conditions, NMF can be used to that purpose. Given the clustered feature sets C; and C,
as well as arank factor f, NMF provides the non-negative matrices W, € RP*/ and H, €
R/t being | = 1,2, to minimize the Frobenius norm ||C; — W;H, ||% handled as the root
mean square error (RMSE). Moreover, the rank factor f is simultaneously set by
minimizing the said RMSE under these two conditions: (i) 1 <f<(p — 1) whenp <n;
and (i1) 1 < < (1 — 1) when p>r;. With the non-negative matrices W; and H;, the
clustered features can be reconstructed via:

Cl = W;H, (1)

The reconstructed clusters C; € RP*™ and C, € RP*"2 then represent the output of
the second step of the proposed method.

MAHALANOBIS-SQUARED DISTANCE

Novelty detection is the unsupervised learning stage for feature analysis. In fact, the
unsupervised learner or novelty detector is trained by the means of unlabeled data, to



finally make a decision on the test data regarding the current, unknown state. If the test
data belongs to an abnormal situation characterized by a damaged structural state, the
novelty detector should immediately detect it. In this work, a non-parametric novelty
detector based on the MSD is adopted to investigate the evolution of the model output,
namely of the novelty scores, and also understand whether the environmental and
operational effects are mitigated.

Given the reconstructed features in {C;, C,}, the parameters handled by the MSD-
based novelty detector are the mean vectors {p;, n,} and the relevant covariance
matrices {Z;,X,} of the reconstructed features. Each mean vector gathers p elements,
while each covariance matrix has dimensions p X p. To define the novelty indices, each
training feature is exploited in the following form:

D (%;) = min ((Xi - llj)sz_l(Xi - llj)) (2)

where i = 1,..,n and j = 1,2. In the testing (inspection) period, the vectors X; are
substituted in Eq. (2) by the new received test vectors z;, being k = 1, .., m, as follows:

D (2) = min ((Zk - Ilj)sz_l(Zk - l»lj)) 3)

For m test features, m novelty indices can be obtained as well. Accordingly, if the
test features belong to the damaged state of the structure, there should be a clear distance
or difference between the novelty indices relevant to these features and the novelty
indices obtained for the training features, which are related to the undamaged condition.
On the contrary, in case of test features belonging to the undamaged state, the
corresponding novelty indices should be similar to those pertinent to training.

EXPERIMENTAL INVESTIGATION: THE KW51 BRIDGE

To assess the performance of the proposed method, the steel arch bridge called
KWS51 [22] is here considered, see Figure 1. This structure is a railway bridge that
connects Leuven and Brussels in Belgium, along the railway line L36N. The bridge is
115 m long and 12.4 m large. Since 2 October 2018, the bridge is equipped with an
SHM system consisting in vibration and environmental sensors, to acquire acceleration
time histories and environmental data too. The time histories of the modal frequencies
between 2 October 2018 and 15 May 2019 are here considered, with reference to the
normal condition; therefore, the effects of environmental factors on those modal
frequencies are evaluated next.

An automated OMA was implemented by Maes and Lombaert [23], to identify the
modal properties of the bridge including the relevant natural frequencies. The automated
OMA allowed to yield information in time concerning 14 vibration modes. To avoid
issues related to missing information regarding some of those modal features, only the
modes 6, 10, 12, and 13 are here considered.



Figure 1. The KW51 Bridge.
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Figure 2. Time evolution of the modal frequencies of the KWS51 Bridge.
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Figure 3. Evolution of novelty indices related to the training (black points) and testing (red points)
data, as provided by: (a) the proposed method, (b) the direct use of the MSD-based novelty detection
without data clustering and feature reconstruction.

The total number of samples in the time histories of the modal frequencies of the
undamaged state are 2688: Figure 2 shows the said histories of the dynamic features.
As can be seen, environmental effects show up as sudden jumps in the range of samples
1345-2017. Since such variability in any novelty detector provides a footprint similar to
damage, the aim of the proposed methodology is to remove the aforementioned sudden
jumps in the time histories. Therefore, the existence of two variability forms including
the usual and sudden ones, provides a rationale to ascertain the accuracy of the two
clusters adopted for the hierarchical clustering.

All the features in the time series of Figure 3 are divided into training and testing
datasets, with a ratio of 75% : 25%. In the first step, the training data X € R**2016 are
partitioned into the two clusters C;ER*1°7° and CER*37, so resulting into 71=1979 and
r=37. The clustered features are then exploited by the local NMF methodology, to
reconstruct them. Regarding this stage of the analysis, on the basis of the first condition

2688



needed for the rank factor, the parameter /' can take a value between 1 and 3; its optimal
value is selected as the one providing the minimum RMSE value. The result is shown
in Figure 3(b), where the optimal rank for the first and second clusters are identified as
3 and 2, respectively. The clusters are then reconstructed to be adopted in the MSD-
based novelty detection stage. Figure 3(a) shows the corresponding time evolution of
the novelty indices related to the training and testing data points. For a comparison, the
same process is repeated by using the MSD-based novelty detection without prior data
clustering and feature reconstruction, so by directly handling the training and testing
matrices via the MSD. The results of this latter strategy are displayed in Figure 3(b). As
can be seen, the proposed method succeeds in removing the environmental effects
caused by the freezing air temperature: sudden jumps in the modal frequencies are no
longer visible in the novelty indices furnished by the proposed method. The other way
around, the said jump is still clearly visible in Figure 3(b). It can be thus concluded that
the proposed method, thanks to its mixed and non-parametric properties, is perfectly
able to deal with the confounding influences induced by the environmental variability.
It also turns out to be superior to the classical MSD-based novelty detection one.

CONCLUSIONS

In this paper, a non-parametric mixed learning technique has been proposed, within
an unsupervised learning strategy, to address the confounding effects caused by
environmental and/or operational variability. The proposed method consists of the three
steps of data clustering via the hierarchical agglomerative clustering, clustered feature
reconstruction through local NMF, and novelty detection based on the MSD metric.

The time histories of the modal frequencies of the KW51 Bridge have been adopted
to evaluate the performance and effectiveness of the proposed method. The obtained
results have demonstrated that the proposed method can effectively remove the
environmental variability, for instance showing up as sudden jumps in the structural
vibration frequencies caused by a freezing air temperature. This method has been also
shown to outperform the classical MSD-based novelty detection technique. This
conclusion has confirmed the proposed unsupervised mixed learning strategy, if based
on an ad-hoc defined data clustering to deal with the said variability effects, can properly
lead to robust SHM strategies.
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