
ABSTRACT 

This study presents a Ritz-type analysis for obtaining the vibration frequencies and 
mode shapes of beams that have a discontinuity in slope. Such structures have a wide 
range of applications in engineering as they often represent structural idealizations of 
complex structures such as robotic arms, crack modeling and foldable wings of aircraft. 
In the present study, the beams have been modeled using Euler Bernoulli’s theory, and 
the discontinuity in slope is represented by a torsional spring connecting the two seg- 
ments of the beam. The beams are discretized into subdomains based on the location of 
the discontinuity. Legendre polynomials are used to define the displacement variation 
over individual uniform domains. The continuity of displacement is applied at the inter- 
face of adjacent subdomains and is enforced into the global system of equations using 
a condensation procedure. This procedure eliminates the dependent Ritz constant ob- 
tained from the displacement continuity. This study focuses on obtaining the vibration 
frequencies and mode shapes of a simply-supported beam with a discontinuity in slope 
and compares the results with the analytical solution. 

The paper would be of interest to researchers involved with the structural health 
monitoring of beams with cracks, robotic arms, and vibrations of folding wings like the 
one being considered for 777-X. 

 

INTRODUCTION 

Dang et al. [1] and Parthasarathy and Kapania [2] proposed a piecewise Ritz method 
to handle discontinuity in beams either subjected to discontinuous load or stepped beam. 
The beams are discretized into beams without discontinuity (subdomains) based on the 
location of the discontinuity. Trial functions are chosen individually for each subdomain 
based on their boundary conditions. Later, the compatibility conditions are applied at the 
interface of adjacent subdomains and are enforced into the global system of equations 
using a condensation procedure or the method of Lagrange multipliers. The proposed 
approach is a powerful tool for approximating displacements, shear force and bending 
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moment. In all the previous studies, the displacement and slope were continuous at the
point of discontinuity. However, what if either of these aforementioned quantities were
discontinuous? Will, in that case, the current method still hold? The current study deals
with one such problem, i.e., finding the natural frequencies and mode shapes of vibration
of beams with discontinuity in slope. In the case of the general Ritz method, choosing a
single continuous and differentiable function as trial functions would not yield accurate
results.

To represent the discontinuity in slope, a torsional spring is placed along the span of
the beam, i.e., each end of the torsional spring is connected to different segments of the
beam, as shown in Figure 1. Such structures have a wide range of applications in the
engineering field and generally represent structural idealizations of complex structures.
Cracks are one of the main modes of structural failure; they represent a decrease in
stiffness and natural frequency, causing structures to fail during their operational life. As
a result, when the structure is subjected to an external load, the crack will tend to open
and close, causing the structure to twist or bend. Thus, torsional springs can be used to
model cracks [3]. In aerospace engineering, torsional springs are often used to represent
the folding wing configuration because they can simulate the wing’s behavior as it is
folded and unfolded. In a folding wing configuration, the outer wing tip is attached to the
inner wing of an aircraft via a hinge or pivot point, which allows the wing to rotate about
its longitudinal axis. Torsional springs can be used to model this rotational behavior by
providing a resistance to twisting or torsion, which is analogous to the resistance that the
wing experiences as it is folded or unfolded [4, 5].
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Figure 1. Euler-Bernoulli Beam

NORMAL MODES: EULER-BERNOULLI BEAM WITH DISCONTINUITY IN
SLOPE

An Euler Bernoulli beam is considered with a discontinuity in slope which is rep-
resented by a torsional spring (stiffness Kt) connecting two segments of the beam as
shown in Figure 1. The system’s frequencies and corresponding mode shapes are of
particular interest. The beam is divided into beam segments or subdomains without any
discontinuities and has length L(i) and is represented by a non-dimensional coordinate
system ξ − η. Where, L(i) represents the length of the ith subdomain. For the system
shown in Figure 1, the left beam segment is subdomain 1, and the right beam segment



is subdomain 2. The transformation from Cartesian x − y coordinate system to a non-
dimensional coordinate system is given by:

x =
1

2
(L(i)ξ + (xi + xi+1)); ξ ∈ [−1, 1] (1)

Later we obtain the strain energy and kinetic energy in the non-dimensional coordi-
nate system for each subdomain [1, 2], which is used for finding the Lagrangian func-
tional. The Lagrangian functional ℓ(i) is minimized only if the unknown Ritz coefficient
vector q satisfies the below Euler-Lagrangian Equation

d

dt

(
∂ℓ(i)

∂q̇(i)

)
− ∂ℓ(i)

∂q(i)
= 0;m = 1...N (i) (2)

Where N (i) represents the number of trial functions and q(i) represents the vector of
unknown Ritz coefficients for the ith subdomain. ϕm are the trial functions, and for the
current study, Legendre polynomials are chosen. The above equation leads to a standard
eigenvalue problem

(K(i) − ω2M (i))q = 0 (3)

Where
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(4)

The stiffness and mass matrices for each domain are assembled as shown below.

K =

K(1) 0 0 ...
0 K(2) 0 ...
... ... ... K(NS)

 ,M =

M (1) 0 0 ...
0 M (2) 0 ...
... ... ... M (NS)

 (5)

Where K and M are the global stiffness and mass matrices, respectively. NS repre-
sents the number of subdomains. For the current system, there are only two subdomains,
and the torsional spring is accounted for by creating another matrix that only consists of
terms related to the stiffness of the spring.

Kspring =

[
k
(1)
spring k

(2)
spring

k
(3)
spring k

(4)
spring

]
(6)



Where
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ϕ
′(i)
m represents the trial function for the ith subdomain. The above spring terms are

in the transformed non-dimensional ξ − η coordinate system. Finally, the global or total
stiffness matrix of the system is given by the sum of the stiffness matrix of the beam and
spring. This can be represented as follows:

K =

[
K(1) + k

(1)
spring k

(2)
spring

k
(3)
spring K(2) + k

(4)
spring

]
(8)

where K(1) and K(2) represent the stiffness matrices of subdomain 1 and subdomain
2, respectively. The global eigenvalue problem for the whole structure can be represented
as:

(K − λ M)q = Hq = 0 (9)

Where H = K − λ M and λ = ω2. The above equation can be expressed in matrix
form as:

H =

H
1 . . . . . .

... H2 . . . . . .
. . . . . . HNS

 (10)

H(i) represents K(i)−λM (i). A set of equations are formed by applying the displace-
ment and slope continuity conditions at the interface of the adjacent subdomains. If the
slope is discontinuous, only the continuity of displacement is taken into consideration.
These systems of equations can be represented in terms of a set of equations:

[C]{q} = 0 (11)

Where {q} is a vector of the Ritz coefficients, and its dimensions depend on both the
number of subdomains and the number of trial functions chosen for each domain. The
dimensions of the C matrix is (2(Ns − 1), Ns.N).



Dang et al. [1] and Parthasarathy and Kapania [2] have provided a detailed formula-
tion of the condensation procedure for eliminating dependent Ritz coefficient.

The condensation procedure is repeated for all the dependent degrees of freedom.
The number of dependent degrees of freedom is directly related to the number of conti-
nuity conditions applied at the interface and the number of subdomains. The condensed
geometric stiffness matrix −M∗ is obtained by taking a derivative of H∗ with respect to
λ. The condensed stiffness matrix is obtained as follows:

K∗ = H∗ + λM∗ (12)

The condensed eigenvalue problem for finding the eigenvalues is in the form:

(K∗ − λM∗)q∗ = 0 (13)

For the current case, there would be just one interface condition, i.e., continuity of
displacement, instead of two. The consequence of just one interface condition yields just
one dependent Ritz coefficient at the junction of each adjacent sub-domain. For example,
let us assume the system shown in Figure 1, and the displacement of each subdomain
is approximated by five trial functions. The dimension of K and M before and after
condensation is 10×10 and 9×9, respectively.

Modeling the systems, such as shown in Figure 1, using commercial software is not
straightforward. The system has been modeled using Nastran, where beam segments
are modeled as two beams without connection. By using the CBUSH element that has
6DOFs, we model the torsional spring. In order to ensure continuity of displacement,
except for the DOF corresponding to rotation, we need to provide very high stiffness
values for the remaining DOFs which acts like a rigid link, ensuring displacement con-
tinuity between the last node of the first beam segment and the first node of the second
beam segment.

NUMERICAL EXAMPLE: RITZ APPROACH FOR MODAL ANALYSIS OF BEAM
WITH TORSIONAL SPRING

The current section discusses the application of the above formulation for a simply
supported beam, as shown in Figure 1. The structure is split into subdomains without
discontinuities. Next, the trial functions are chosen for the approximating displacement
of each subdomain based on the boundary condition. For the simply supported beam
problem, for the first subdomain, the trial functions are chosen such that at ξ = −1,
displacement is zero, while for the second subdomain, such that at ξ = 1, displacement
is zero.

A total of six trial functions were chosen for each subdomain of the system. The first
four mode shapes for the simply-supported beam are shown in Figure 2 while the first
four natural frequencies are shown in Table I.

The mode shapes are normalized by the modal displacement at x = 2L
5

. The plots
and tables show that the results from the present method are in very good agreement with
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Figure 2. First Four Mode Shapes of a Simply Supported Beam with Torsional Spring located at
x = 2L

5

the analytical solution and the results obtained from FEM by choosing ten elements for
both subdomains. As stated earlier, the effect of torsional spring causes a discontinuity
in slope, which can be observed in the mode shapes. There is a small discrepancy in
the fourth mode and the corresponding frequency; choosing a higher number of trial
function terms would reduce the discrepancy further.

TABLE I. Comparison of First Four Natural Frequencies with Analytical Solution and FEM for
a Simply Supported Beam with Torsional Spring located at x = 2L

5

Mode Analytical FEM Present
1 1.5779 1.5779 1.5779
2 7.0189 7.0199 7.0189
3 15.8093 15.8193 15.8174
4 26.6744 26.7259 26.8724

CONCLUDING REMARKS

The present study provides an extended version of the Ritz method, i.e., the piecewise-
Ritz method for analysis related to the free-vibration of beams with discontinuity in



slope. The beam is split into subdomains with no discontinuities, and a constraint matrix
is formed based on displacement and slope continuity at the junction of two adjacent
subdomains. The constraint equations or the interface conditions are included for re-
moving dependent Ritz coefficients. Thus, a condensed stiffness and geometric stiffness
matrix are obtained. The numerical example for a beam with discontinuity in slope that
was represented by a torsional spring connecting the two segments of the beam was im-
plemented using the proposed method. For the above case, the condensation process
was implemented to eliminate dependent Ritz coefficients but with just continuity of
displacement at the sub-domains interface. Six trial functions were chosen for each sub-
domain for numerical examples shown; the natural frequencies and mode shapes were
in very good agreement with the analytical solution.

This work can be further extended by choosing different trial functions and struc-
tures being analyzed. Choosing beam characteristic functions (mode shapes of individ-
ual beams) as trial functions instead of orthogonal polynomials for vibrations of stepped
beams as the latter is disadvantageous for high-frequency analysis [6]. The present study
can also be extended for the analysis of plates with stiffeners. The stiffeners can be
placed arbitrarily on the plate in contrast to FEM, where the nodes have to be shared to
apply compatibility conditions. By independently interpolating stiffener DOFs and plate
DOFs, we can use 1D trial functions for stiffener, making the analysis computationally
efficient by reducing the order of integration. Since the independent trial functions (poly-
nomials) for the stiffener would be defined in the local domain of the stiffener. Strain
energy can be derived easily without any local transformations. Only one transformation
would be needed at the end to add the strain energies together, which can be implemented
with the help of compatibility conditions [7].
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