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ABSTRACT 

Acoustic emission (AE) source localization is an important part of monitoring the 
health of infrastructures. Though straightforward for isotropic materials, where analyt- 
ical solutions exist, locating sources for anisotropic materials is complicated due to the 
angle-dependent wave velocity. The problem is even more intractable if heterogeneity 
involves. This is the case for laminated veneer lumber (LVL), an engineered wood ma- 
terial composed of multiple thin layers of wood, where defects such as knots, voids and 
discontinuity distributed randomly within the layers, greatly undermining the effectivity 
of common localization methods for man-made composites. To avoid the problem of 
heterogeneity, this work employed Gaussian process regression (GPR) to address the 2D 
AE source localization problem in an LVL plate. With four AE sensors attached at the 
corner of ROI in the plate, multiple pencil lead break tests were conducted to collect the 
difference of time of arrival (dTOA) between different sensors. The vector of dTOAs 
serves used as the input of the Gaussian process regression while the output is the source 
location. The marginal likelihood was maximized to achieve the optimal model parame- 
ters. The input vectors of a different combination of dTOA components were fed into the 
GPR model, both the predictions on grid points and off-grid points were analyzed. The 
high accuracy of the mean predictions over all possible combinations of dTOAs indicates 
such a method can well cope with 2D source localization problems in LVL structures. 

 

INTRODUCTION 

Laminated veneer lumber is one of the most widely used engineered wood for build- 
ing construction. It consists of multiple thin layers of wood stacked with adhesives, 
resulting in superior features to that of conventional lumber in higher strength, more re- 
liable mechanical properties as well as less likeliness of wrapping, twisting, bowing or 
shrinking. A typical LVL plate is shown in Figure 1 with three axes as the longitudinal 
direction (L), the tangential direction (T), and the radial direction (R). Although there 
are many studies focusing on investigating the acoustic emission behavior of wood, only 
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a limited number of them studying the LVL. Usually, wood is considered as orthotropic
material with L, T, R axis. However, this might not be true for LVL due to the exist-
ing knots (the brown dots in top view in Figure 1), flaws, or voids in its manufacturing
process.

Figure 1. The Laminated Veneer Lumber plate

As a common way for structural health monitoring of infrastructures, acoustic emis-
sion testing was considered in this paper to investigate the source location in an LVL
plate. In fact, acoustic emission is defined as the release of transient elastic waves gen-
erated from a rapid release of strain energy [1]. By attaching piezoelectric sensors (AE
sensors) working within a certain frequency range on the monitored structures, wave-
forms generated by internal micro-cracks can be collected and analyzed.

The source localization is one of the most intriguing features of AE testing. Through
analyzing the dTOA between sensor pairs, the source can be located. For isotropic ma-
terials, the wave velocity is regarded as a constant. With it known, theoretical solutions
can be solved [2]. For man-made composite materials, though their properties are angle-
dependent, their textures are uniform, and the wave velocity varies with propagation
angle, leading to no theoretical solution. Instead, the source location is typically solved
by optimization.

The high degree of heterogeneity of LVL makes the wave travel path unpredictable
and invalidates the common methods suitable for man-made composites [3–6]. Fortu-
nately, this issue can be solved by machine learning considering the dTOAs. The unpre-
dictable travel path for LVL is similar to that of the metal plate with holes. The previous
research [7] has proven that Gaussian process regression is applicable to the latter prob-
lem. This work tried to employ the GPR for wood, the model was trained by maximizing
the model evidence instead of the sum of the squared loss used in [7]. Besides, the input
dTOA vector of different lengths was analyzed thoroughly. The results suggested that
the GPR can handle the source localization problem in LVL plate structure with enough
accuracy.

DATA ACQUISITION AND EXPERIMENTS

A Laminated Veneer Lumber (LVL) plate shown in Figure 1 with the dimension
of 9 ft by 6.5 inches by 1 inch is used for source localization in this article. A small
region of interest (ROI) was drawn on the center of the plate to avoid any boundary



effects. At the same time, a grid with the size of 3.5 inches long and 3.0 inches high
was drawn exactly on the ROI, which is shown in Figure 2. Its grid size is 0.25 inches.
Four Nano-30 sensors manufactured by Physical Acoustics Corporation were mounted
on the four corners of the grid with wax. The four corners marked by brown color were
neglected since they are too close to the sensors and the waveforms may not be accurate.
Each sensor was then connected to an amplifier followed by the terminal of the Physical
Acoustic AE system.

(a) Sensor Location (b) Region of Interest

Figure 2. Layout of the grid (Unit: inch)

The pre-step is constructing a databank where the waveforms generated by the pencil
break tests on all the grid points were stored there. However, for source localization, only
the first part of the waves is of interest because the P-wave always arrives at the sensors
first. The dTOA (difference of time of arrival) of between sensor pairs were extracted.
The onset of wave was determined by AIC (Akaike Information Criterion) picker. At
least 10 pencil break tests were conducted at each grid point. Instead of taking the
mean of all the tests on each grid point, all the reasonable dTOAs were kept to allow for
uncertainty during the tests. The grid’s origin is set at the bottom left corner of the grid.
Given a position vector field:

r = (xi, yj), (i, j = 1, 2, 3, . . . , N) (1)

The measurements are:

∆T = [t12, t13, t14, t23, t24, t34]
T (2)

The relation between the position vector and the measurement vector is a one-to-
one mapping. This study aims at investigating such mapping through machine learning.
The relation between the measured difference of time of arrival between different sensor
pairs and the source coordinates can be represented as

r = f(∆T) (3)

The problem then comes down to learning the mapping from the measured ∆T vector
to the source location r, which is a regression problem. Since there are six components in
the ∆T vectors, it is feasible only to use part of them, where a Bayesian sampling space
is constructed. Each scheme corresponds to a model, the total is 6+15+20+15+6+1 =
63, obtained by the combinations.



2D AE SOURCE LOCALIZATION BY GAUSSIAN PROCESS REGRESSION

Once the data collection job is done, the training databank is available. It contains
roughly 2200 measurements, while there are 10 off-grid test points and 10 grid test
points where at least 5 tests were repeated in each individual test point location to allow
for uncertainties.

In GPR, the training dataset and the test data are combined and assumed to obey the
multivariate Gaussian distribution. The joint distribution of the noisy training samples
(X, y) together with the prediction of the test data (X∗,f ) is,[

y
f∗

]
∼ N

(
0,

[
K(X,X) + σn

2I K(X,X∗)
K(X∗,X) K(X∗,X∗)

])
(4)

Where the radial basis function is considered and serves as a kernel here to compute
the covariance between the random variable xp and xq, which is the two ∆T vectors in
this study.

k(xp, xq) = αexp

(
−
||xp − xq||2

2σ2

)
(5)

Through matrix derivation, the posterior given the training dataset and the test input
also observes the Gaussian distribution [8]

f∗|X∗,X, y ∼ N(f̄∗,Σ) (6)

Where
f̄∗ = K(X∗,X)[K(X,X) + σn

2I]−1y (7)

Σ = K(X∗,X∗)−K(X∗,X)[K(X,X) + σn
2I]−1K(X,X∗) (8)

The evidence of the training dataset also satisfies the Gaussian distribution

y|X ∼ N(0,K(X,X) + σn
2I) (9)

There are three hyperparameters in GPR, which is α, σ in equation (5), and σn in
equation (4). The Gaussian process model was trained by maximizing the evidence of
all 63 models, corresponding to different number of components for the ∆T vector. The
final predictions are the mean predictions over all the possible models with the optimal
hyperparameters.

RESULTS AND DISCUSSIONS

The root mean squared error δrmse was used to measure the prediction performance.

δrmse =

√√√√ N∑
i=1

1

N
||r̂i − ri||2 (10)

Once the evidences of all the 63 models were maximized, the training process was
completed. The predictions for 10 off-grid test points and 10 grid test points are shown



in Figure 3, respectively. The large and dim symbols show the ground truth, while the
thicker one shows the mean predictions, the rest points show the prediction for a single
measurement. A same shape shows the predictions for each individual test point.

(a) On grid points (b) On off-grid points

Figure 3. Predictions by GPR over all models

The average rmse of using a different number of components showed different errors.
The results for grid test points and off-grid test points are 0.27 inches and 0.52 inches,
corresponding to Figure 3 (a) and (b) respectively. Since the training data are exactly on
the grid, it is reasonable that the root mean square errors for grid points are smaller than
that of the off-grid points. Clearly, the average errors for off-grid points are about two
times that of the grid size. This is acceptable since the diameter of the sensor is about
0.4 inches, and the accuracy cannot be smaller than the diameter of the sensor.

CONCLUDING REMARKS

The input ∆T vector of different number of dTOAs was tried, which correspond to
different models. The evidences of all the models were maximized to achieve optimal
model parameters. As expected, the prediction results on grid points have higher ac-
curacy than those on off-grid points due to that the training data are on the grid nodes.
Overall, the predictions are accurate and the GPR can handle the source localization
problem on LVL plate structures.
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