
ABSTRACT 

Bridge health monitoring (BHM) is important to detect damages in the early stages to 
avoid loss of human life and any disruption in the continuous bridge operations. Drive- 
by vehicle-based BHM approaches provide more scalable monitoring as compared to 
manual inspection and fixed sensors on bridges. Each vehicle can pass multiple bridges 
and can be used for monitoring multiple bridges. In our prior work, we developed a 
method that can diagnose damage in multiple bridges while eliminating the burden of 
collecting labeled data from all the bridges. It is achieved by learning features that are 
sensitive to damage and invariant across bridges. However, in real-world scenarios, ve- 
hicles passing the bridge possess varying properties such as suspension system, driving 
speed, and vehicle mass. Since the vibration signal obtained from the vehicle depends 
on the vehicle’s properties, these variabilities in vehicle properties lead to inaccurate 
damage prediction of the bridge even for the same damage state. 

To overcome these challenges, we introduce a Bootstrapping-enhanced Vehicle - 
Bridge-Invariant (BeVBI) approach for robust drive-by BHM. It reduces the vibration 
signal variation due to varying vehicle properties through bootstrapping-based mean es- 
timations. Specifically, vibration signals obtained from vehicles (with varying vehicle 
properties) passing the bridge are randomly aggregated with replacement (i.e., bootstrap- 
ping) and averaged. Based on the central limit theorem, averaging the aggregated signals 
(bootstrapped signals) reduces signal variability due to vehicle properties by the square 
root of the number of aggregated signals. Further, these bootstrapped signals are used 
to predict the damage on multiple bridges by adopting an unsupervised domain learn- 
ing algorithm. The performance of the above approach is evaluated using a numerical 
vehicle bridge interaction dataset with two different bridges and 4800 drive-by vehicles 
having different dynamic properties and speeds. Our approach is successful in diagnos- 
ing multiple bridges while being robust to varying vehicle properties. It performs 1.45x 
better in the detection and localization of damage and 1.75x better in the quantification 
of damage as compared to baseline methods (MCNN and HierMUD). 
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INTRODUCTION

With the growing number of aging bridges, there is an increasing demand to develop
a bridge health monitoring (BHM) method that is scalable and effective. Further, the
method should be able to detect damage in the early stage across multiple bridges to
avoid loss of human life and any disruptions in the continuous operations of the city.
Conventionally, bridge assessment is done via manual inspection that requires skilled
personnel to inspect the bridge. However, this method is not scalable due to high labor
costs and failure to detect damage in the early stages. To address this challenge, fixed
sensors-based BHM techniques have been developed which can detect the damage in
the early stages on the bridge [1, 2]. However, the installation and regular on-site main-
tenance of the sensors cause traffic interruptions and make this method hard to scale
up.

On the other hand, drive-by BHM provides a scalable approach as it uses vehicle
vibration passing the bridge to monitor the bridge’s health. Existing drive-by BHM
approaches can be categorized into bridge modal parameter estimation and data-driven
approaches. The bridge modal parameter estimation approach uses vehicle vibration sig-
nal to estimate modal parameters of the bridge, such as modal frequencies, mode shape,
and damping to detect the damage on the bridge [3]. However, many of these methods
estimate parameters by making simplified assumptions such as Euler-beam theory and a
simply supported beam that may not hold true with real-world data. Further, these meth-
ods require prior knowledge about bridge properties to accurately estimate modal param-
eters [4]. Data-driven approaches use signal processing and machine learning techniques
to detect damage on the bridge. These methods extract damage-informative features that
can diagnose damage more effectively [4–7]. Liu et al. developed a method that can
diagnose multiple bridges without requiring the labeled data from all the bridges [8]. It
transfers the damage diagnosis model learned for one bridge to predict the damage on
another bridge and tackles the data distribution shift challenges in extracted features due
to the diverse properties of bridges. However, the vibration signal obtained from the
vehicle also depends on the vehicle’s properties. In real-world scenarios, all the vehicles
passing the specific bridge may not possess similar dynamic properties, including sus-
pension system, mass, configurations, and driving speeds. Due to these varying vehicle
properties, the damage predictions for the signals are different even though they belong
to the same damage state. This leads to inaccurate prediction and hinders the damage
diagnosis performance.

To overcome these challenges, we introduce a Bootstrapping-enhanced Vehicle -
Bridge-Invariant (BeVBI) for robust drive-by BHM. It reduces the vibration signal vari-
ation due to varying vehicle properties through bootstrapping-based mean estimations.
Specifically, our approach involves three steps: 1) spatial interpolation of the signal for
the reduction of vehicle speed variation, 2) bootstrapping of the signal for the reduction
of vehicle property variation, and 3) damage prediction on multiple bridges. Firstly, due
to the varying speeds of the vehicle, the signal length of vehicles passing the bridge
varies. Moreover, these signals are sampled at different sets of spatial locations on the
bridge. Spatial interpolation provides the vibration of the vehicle at equally spaced spa-
tial locations on the bridge, making the length and location of the signal on the bridge
consistent. Secondly, the vibration signal characteristics depend on the vehicle’s prop-



erties. The variability in vehicle properties hinders the learning algorithm’s ability to
accurately predict the damage on the bridge even for the same damage state. To reduce
the effect of vehicle properties, these signals are aggregated randomly with replacement
(i.e., bootstrapped), and a new sample is generated by averaging the aggregated boot-
strapped signals. According to the central limit theorem, variation in vibration signal
due to vehicle properties can be reduced by the square root of the number of aggregated
signals. Lastly, these newly generated signals are used to diagnose damage on multiple
bridges by adopting an unsupervised domain adaptation learning algorithm [8]. This
algorithm transfers the learned damage diagnosis model from one bridge to predict dam-
age on the new bridge without requiring the new bridge damage labels. It learns features
that are damage informative and bridge invariant in an adversarial way.

The performance of our approach is evaluated on a numerical vehicle bridge inter-
action dataset [5]. This dataset includes two bridges with different lengths and vehicles
with varying dynamic properties and speeds ranging from 30 to 80 Km/hr. Our ap-
proach achieved an accuracy of 99% in damage detection, 99% in damage localization,
and 91% in damage quantification on the bridge without requiring its damage labels. Our
approach is 1.45x better in the detection and localization of damage and 1.75x better in
the quantification of damage as compared to baseline methods (MCNN and HierMUD).

BOOTSTRAPPING-ENHANCED VEHICLE-BRIDGE-INVARIANT (BEVBI) BRIDGE
HEALTH MONITORING

In this section, we describe our Bootstrapping-enhanced Vehicle-Bridge-Invariant
(BeVBI) approach that consists of 3 modules as shown in Figure 1: Spatial interpo-
lation for reduction of speed variation, bootstrapping for reduction of vehicle property
variation, and damage prediction on multiple bridges.

Spatial interpolation for reduction of speed variation

To ensure the consistent length and spatial location of the vibration signal on the
bridge due to varying vehicle speeds, the vehicle vibration signal is chopped and inter-
polated at fixed spatial locations for a specific bridge. Firstly, the vehicle vibration signal
over the bridge is extracted by chopping the vehicle vibration signal from the moment
the vehicle reaches the start of the bridge until it reaches the end. This is because vehicle
vibration signals are obtained by running the vehicle on the ramp before it passes the
bridge. However, it contains valuable information about the bridge when the vehicle is
over the bridge. Secondly, the signal is interpolated to equally spaced locations along the
bridge using spline interpolation. Due to varying vehicle speeds, time-domain vehicle
vibration signals have different lengths. Further, each signal corresponds to vibrations
obtained at a different set of spatial locations on the bridge. For bootstrapping, each data
point in the vibration signal needs to represent consistent information such as vibration
at the same spatial location on the bridge. This also ensures the same length of the input
is fed into our unsupervised domain adaptation learning algorithm, which is required for
our learning algorithm.

Bootstrapping for reduction of vehicle properties variation
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Figure 1. BeVBI System Overview

To reduce the vibration signal variation due to the varying vehicle properties obtained
from the specific bridge, the mean signal is estimated from the bootstrapped signals. Ve-
hicle vibration signals obtained for the specific bridge depend on vehicle properties such
as speed, mass, suspension system, and bridge dynamic properties. The variability in ve-
hicle properties hinders the learning algorithm’s ability to accurately predict the damage
on the bridge even for the same damage state. Therefore, to reduce the signal variability
due to varying vehicle properties, we first aggregate the vibration signals randomly with
replacement through bootstrapping and then, average the aggregated signals to generate
the new signal. According to the central limit theorem, averaging the bootstrapped sig-
nals reduces the signal variations due to varying vehicle properties by the square root
of the aggregated random signals. Here, we assume the speed, mass, and suspension
system of the vehicle to be independent and identically distributed random variables. In
particular, the vibration signals from each bridge are divided into N1 and N2, training
and testing events subsets. Then, Ntrain and Ntest new samples are generated by av-
eraging the X randomly sampled with replacement from training and testing subsets,
respectively. Note that N1 and N2 should be greater than the number, X .

Damage prediction on multiple bridges

To extract the features that are invariant across multiple bridges (bridge-invariant) as
well as informative for various damage states (damage-informative), we adopt an unsu-
pervised domain adaptation learning algorithm approach [9]. This learning algorithm
transfers the damage diagnosis model learned from one bridge with known damage la-
bels (source bridge) to predict damage on another bridge with unknown damage labels
(target bridge) [8]. This algorithm compromises 3 main components: Hierarchical fea-
ture extractors, task predictors, and domain classifiers. The bootstrapping-based mean
estimated signals are used to extract damage-informative features by the hierarchical fea-
ture extractors. Task predictors use these extracted features to predict the damage task
label. Further, the extracted features are also used by the domain classifier to classify
whether these features are from the source bridge or target bridge. To make features
bridge-invariant, the domain classifier should not predict the extracted feature’s source
accurately. To keep extracted features damage-informative to various damage states, task
predictors should accurately predict damage labels on the source bridge data. Therefore,
domain classifiers and feature extractors are trained in an adversarial way which en-
sures that domain classifier performance is minimized while task predictor performance



is maximized in the source bridge. To achieve this adversarial learning, a Gradient Re-
versal Layer (GRL) is introduced before the domain classifier layer. GRL multiplies the
negative constant to the loss function during backpropagation [10].

Further, damage diagnosis consists of multiple tasks, such as localization, detection,
and quantification. Due to the distinct performances of various tasks in the source bridge,
more learning resources are allocated to extract deeper features for hard tasks. To achieve
this, the hierarchical framework is adopted [8] for multiple-task learning. In particular,
damage quantification is considered a difficult task due to its performance in the source
bridge, and damage detection and localization are considered easy tasks. Once the model
is trained, bootstrapping-based mean signals for the target bridge are used to predict the
damage information on the bridge.

EVALUATION OF BEVBI ON A SIMULATED VEHICLE-BRIDGE INTERAC-
TION MODEL

In this section, we describe vehicle-bridge interaction data used for our evaluation,
the setup for the BeVBI model, and its performance.

Simulated vehicle-bridge interaction data description

The simulated dataset used for the evaluation of our method includes 2 bridge lengths
(21 m and 27 m), one-axial oscillator vehicle, and a smooth road profile with no rough-
ness [5]. A simply supported 2-D beam is used to model the bridge. The vehicle is made
to run on the bridge several times. In each run, vehicle properties such as speed, the mass
of the body, stiffness, and damping of the suspension system are randomly sampled from
the given distribution (i.e. normal, uniform). Damage is simulated at the quarter-span or
mid-span of the bridge length for each bridge. Further, 3 damage severity level is mod-
eled (no damage, 20%, and 40% beam stiffness reduction) at each damage location).
Details of this dataset can be found in [5]. Our subset consists of 2 (bridge length) ×
1 (vehicle type) × 1 (road profile) × 2 (damage location) × 3 (damage severity) = 12
(damage scenarios). Further, for each damage scenario, 400 simulation events are used
where each simulation event has varying vehicle properties. We used the body as well
as the axle vibration signal for the evaluation of our method as both contain information
about the bridge’s dynamic properties.

Setup for BeVBI model

This subsection describes parameters for bootstrapped signals, the architecture, and
hyper-parameters of our unsupervised Domain Adaptation model. Firstly, we spatially
interpolate the vibration signal to 640 data points that are chosen empirically such that
the signal contains valuable information and is not too big which hinders our unsuper-
vised domain adaptation model learning ability. Then, for each damage scenario, 400
events are divided into N1= 250 and N2= 150 training and testing events subsets, respec-
tively. Further, Ntrain= 250 training samples and Ntest= 150 testing samples were gen-
erated by averaging X = 100 randomly sampled events with replacements from training
and testing events subsets, respectively. The number, X=100 is empirically determined



to best reduce the vehicle property variations. The newly generated samples are nor-
malized based on zero mean and unit standard deviation to help the data-driven model
learn faster and lead to better convergence. For our unsupervised domain adaptation
algorithm, L2 regularization along with stochastic gradient descent (SGD) is used to
avoid overfitting problems during the training [11]. The learning rate is 0.0025 with
a batch size of 100. Further, the model was made to run for 300 epochs. We ran the
whole experiment 10 times to evaluate the performance of our method. Note that the
above-mentioned hyper-parameters are empirically selected.

Performance evaluation of BeVBI on simulated dataset

In this subsection, predicted damage diagnosis results from our method are compared
against two baseline methods (MCNN and HierMUD) for damage detection, localiza-
tion, and quantification tasks [8]. MCNN is a multi-task convolution neural network
model that uses source bridge data as a training dataset and target bridge as a testing
dataset, while HierMUD uses both source bridge and target bridge data for learning the
model. The architecture for both MCNN and HierMUD remains the same as the un-
supervised domain adaptation algorithm of our method to avoid any results bias due
to architecture complexity. Further, the domain classifier layer is not included in the
MCNN, and the bootstrapping-based mean estimation module is not included in ei-
ther HierMUD or MCNN. The comparison against baselines shows the effectiveness
of bootstrapping-based mean estimation as well as unsupervised domain adaptation for
diagnosing damage across multiple bridges for varying vehicle properties.

Figure 2 shows the performance of BEVBI against the baseline methods (MCNN
and HierMUD) for prediction of damage detection, localization, and quantification for
the 27 m bridge (target bridge) and 21 m as source bridge. The results show that our
model outperforms the baseline methods by 1.45x in the detection and localization of
damage and 1.75x in the quantification of the damage on the target bridge.

t-SNE plots of vibration signal in Figure 3 demonstrate the significance of bootstrap-
ping and unsupervised domain adaptation algorithm in our method [12]. Figure 3(a)

(a) (b) (c)

Figure 2. Comaparison between baseline methods and BeVBI for (a) damage detection,
(b) damage localization, and (c) damage quantification for 21m as the source bridge and
27m as the target bridge.



shows the t-SNE plot for preprocessed vibration signal at fixed spatial locations. Fig-
ure 3(b) shows a t-SNE plot for a bootstrapping-based mean estimated signals. Figure
3(c) shows a t-SNE plot of extracted difficult task features from an unsupervised domain
adaptation algorithm. Green, red, and blue markers represent no damage, 20% and 40%
damage at the mid-span of the bridge, respectively. Filled and unfilled markers represent
21 m bridge data and 27 m bridge data, respectively. It can be clearly observed from
Figure 3(a) that it is hard to separate clusters of different damage states for the same
bridge due to varying vehicle properties. Figure 3(b) shows that bootstrapping-based
mean estimation reduced the vehicle variation in the vibration signals, and clusters for
different damage states for the same bridge are easily separable. However, clusters of
the same damage state from different bridges are far from each other as compared to
clusters of different damage states from the same bridge. This makes different damage
states hard to classify for both bridges. Figure 3(c) shows the UDA algorithm reduces the
bridge properties variation and the clusters of the same damage state from both bridges
are much closer as compared to clusters from different damage states. In this way, our
method is able to diagnose the target bridge in an unsupervised way while being robust
to varying vehicle properties.

CONCLUDING REMARKS

In summary, we introduce a Bootstrapping-enhanced Vehicle-Bridge-Invariant ap-
proach (BeVBI) for drive-by BHM. Our approach reduces the vehicle variability through
bootstrapping and adopts an unsupervised domain adaptation algorithm to predict dam-
age information of a new bridge in an unsupervised way by transferring the diagnosis
model learned from another bridge’s labeled data. Our approach performs well for mon-
itoring multiple bridges while being robust to varying vehicle properties. It achieves up
to 99% accuracy in the detection of damage (mean of 83%), up to 99% accuracy in the
localization of damage (mean of 82%), and up to 91% accuracy in the quantification of
damage (mean of 74%). It performs 1.45x better in the detection and localization of dam-

(a) (b) (c)

Figure 3. t-SNE embedding plot of various damage states for damage at midspan for 27 m
(target bridge) and 21 m (source bridge) using (a) pre-processed vehicle vibration data,
(b) bootstrapping-based mean estimated vehicle vibration signal, and (c) task-specific
features extracted from the unsupervised domain adaptation model



age and 1.75x better in the quantification of damage as compared to baseline methods
without the bootstrapping-based mean estimation or unsupervised domain adaptation.

ACKNOWLEDGMENT

Jatin Aggarwal is supported by the Stanford CEE-PhD fellowship.

REFERENCES

1. Sun, L., Z. Shang, Y. Xia, S. Bhowmick, and S. Nagarajaiah. 2020. “Review of Bridge
Structural Health Monitoring Aided by Big Data and Artificial Intelligence: From Condition
Assessment to Damage Detection,” Journal of Structural Engineering, 146:04020073, doi:
10.1061/(ASCE)ST.1943-541X.0002535.

2. Choi, H., S. Choi, and H. Cha. 2008. “Structural Health Monitoring system based on strain
gauge enabled wireless sensor nodes,” in 2008 5th International Conference on Networked
Sensing Systems, pp. 211–214, doi:10.1109/INSS.2008.4610888.

3. Yang, Y.-B., C. Lin, and J. Yau. 2004. “Extracting bridge frequencies from the dynamic
response of a passing vehicle,” Journal of Sound and Vibration, 272(3-5):471–493.

4. Liu, J., S. Chen, M. Bergés, J. Bielak, J. H. Garrett, J. Kovačević, and H. Y. Noh. 2020.
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