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ABSTRACT 

Maglev is a developing transportation mode in the recent years, and its safety and 
stability are required to be ensured by structural health monitoring system. However, 
the data measured by some sensors may be partially or totally unavailable due to the 
external electromagnetic interference or sensor failure. While, in some cases, those 
missing data are important to identify and analyze damage of maglev bridges. Since the 
structural dynamic characteristics of maglev bridge are complicated, the data 
reconstruction of those sensors becomes challenging. Therefore, this study proposes a 
bidirectional long short-term memory (BiLSTM) network to accurately reconstruct the 
maglev bridge acceleration data. The design of long short-term memory helps to 
sufficiently exploit the time series data and learn the hidden features of maglev bridge 
acceleration data between sensors. The bidirectional architecture enables the network to 
simultaneously learn the time series data from past and future, which is beneficial to 
extract more hidden features. A dataset collected from an in-site experiment for maglev 
bridge is used to verify the feasibility of the proposed method. The lost acceleration data 
from abnormal sensors is predicted by the acceleration data recorded from normally 
operating sensors. The results shows that the difference between predicted and true 
acceleration data is at a very low magnitude. Consequently, the proposed method can 
be applied for the high-performance reconstruction of maglev bridge acceleration data. 

INTRODUCTION 

Maglev system consists of train, suspension bogie, rail, and bridge. The degradation 
of maglev bridges may affect the structural stability of maglev system. To control the 
structural performance of maglev systems and improve the reliability of bridges, it is 
critical to predict the acceleration from different sensors installed on the maglev bridge 
by establishing a fair and accurate predictive model, which is the basis for maglev bridge 
acceleration predictions. 

With the thriving progress in artificial intelligence and big data technology, deep 
learning methods have been widely applied in the modeling of maglev bridge 
acceleration prediction. Since the maglev bridge accelerations are a kind of time-series, 
recurrent neural networks (RNNs), as a class of the deep learning methods, are 
promising to realize the data-driven predictive model in the maglev bridge acceleration. 
In RNN, the transmission of information is shaped as a loop by allowing the output from 
one unit to influence the subsequent input to the same unit. Hence, this so-called 
feedback connections in RNN enable the prediction on an entire time-series. 

However, the long-term gradients which are backpropagated can vanish or explode 
thus RNN may be unable to transmit the information efficiently. To solve this shortage, 
long short-term memory (LSTM) network is introduced [1]. As a special design of RNN, 
LSTM consists of three gates responsible for the transmission of information. Due to 
this, LSTM is outperformed than vanilla RNNs on some temporal data processing tasks 
[2]. 
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As a kind of special LSTM, this study aims to propose a bidirectional LSTM 

(BiLSTM) network for the prediction of multiple maglev bridge accelerations. First, 
some acceleration sensors collect historical acceleration data on the maglev bridges, 
followed by the acquisition of dataset prepared for BiLSTM network. Then, a portion 
of them is manipulated as the lost data of maglev bridge accelerations, and the remaining 
acceleration data is regarded as the training dataset. Finally, the prediction is realized by 
BiLSTM network for the data reconstruction of lost accelerations for a maglev bridge. 

 
 

METHODOLOGY 
        

Since LSTM is a special type of RNN, the definition of RNN is first given. Fig. 1 
shows the structure of RNN, where unit 𝐴𝐴 is the main body that receives the input 𝑥𝑥𝑡𝑡 
and generates the output ℎ𝑡𝑡. The loop structure of RNN enables the information of one 
moment to be transmitted to the next moment. Thus, the information can be retained by 
RNN, which is impossible in other neural networks. As shown in Fig. 1, RNN can be 
thought of being made up of multiple copies of the identical unit, and the output of each 
unit serves as the input of its following unit. The structure of RNN is like a chain through 
the time, which can be regarded as a natural design for a neural network to exploit time 
series data. 

 
 

 
Figure 1. The structure of recurrent neural network. 

 
 

Fig. 2 shows the design of block structure between unit of LSTM and RNN. Both 
have the cell for remembering the values over arbitrary time intervals, this helps both to 
form a short-term memory for the information. However, the unit consists of only a very 
simple layer (such as a single tanh function) in RNNs while multiple layers in LSTM. 
The layer difference lies in the design of sigmoid function 𝜎𝜎, which is a lack in RNN. 
The output of each sigmoid function represents the weight on the transmission of 
information and varies from 0 to 1, which means that the transmission of information is 
totally prohibited when 𝜎𝜎 = 0 while is totally permitted when 𝜎𝜎 = 1.  

The sigmoid function is also called gate in LSTM. From the left to right in a LSTM 
unit, the name of three gates is forget gate, input gate and output gate, respectively. 
Assumed the input of a LSTM unit is denoted as 𝑥𝑥𝑡𝑡, the former state and current state 
of cell is denoted as 𝑐𝑐𝑡𝑡−1 and 𝑐𝑐𝑡𝑡, and the output of a LSTM is denoted as ℎ𝑡𝑡, the goal of 
three gates are that 



Forget gate: determination on the amount of information dropping from ℎ𝑡𝑡−1 and 
𝑐𝑐𝑡𝑡−1, 

Input gate: determination on the amount of information adding from 𝑥𝑥𝑡𝑡 to 𝑐𝑐𝑡𝑡, 
Output gate: determination on the amount of information updating ℎ𝑡𝑡. 

 
 

 
(a) RNN 

 
(b) LSTM 

Figure 2. The block structure in RNN and LSTM. 
 
 

To realize the function of forget gate, input gate, and output gate, the following 
equations are satisfied: 

 
𝑖𝑖𝑡𝑡 =  𝜎𝜎(𝑊𝑊𝑖𝑖𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑖𝑖ℎ𝑡𝑡−1 + 𝑏𝑏𝑖𝑖)                                              (1) 

 
𝑓𝑓𝑡𝑡 =  𝜎𝜎(𝑊𝑊𝑓𝑓𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑓𝑓ℎ𝑡𝑡−1 + 𝑏𝑏𝑓𝑓)                                       (2) 

 
𝑜𝑜𝑡𝑡 =  𝜎𝜎(𝑊𝑊𝑜𝑜𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑜𝑜ℎ𝑡𝑡−1 + 𝑏𝑏𝑜𝑜)                                      (3) 

 
𝑐𝑐𝑡𝑡 =  𝑓𝑓𝑡𝑡 ⊙ 𝑐𝑐𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ⊙ tanh�𝑊𝑊𝑔𝑔𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑔𝑔ℎ𝑡𝑡−1 + 𝑏𝑏𝑔𝑔�                    (4) 

 
ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⊙ tanh(𝑐𝑐𝑡𝑡)                                                (5) 

 
By using these three gates, LSTM can realize the control on the transmission of 

information in both long-term and short-term memory. Thus, this is well-suited as the 
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predictive model for time-series. LSTM has been widely utilized by the researchers for 
purposes of structural identification and response prediction [3-5]. 

The regular LSTM network allows the information flow in only one direction. 
While in the bidirectional LSTM (BiLSTM) network, the information can be 
transmitted in two directions, i.e., in backwards and forwards, as represented in Fig. 3. 
The hidden states computed from two information flows are concatenated. As a result, 
the information from both past and future states can be obtained simultaneously, which 
effectively increase the amount of information available. Applications of BiLSTM in 
structural engineering can be found in the recent literature [6-8] and deserve more 
studies. 

 
 

 
Figure 3. The architecture of bidirectional LSTM (BiLSTM) network. 

 
 

RESULTS 
 

Data preparation 
 

The dataset is originated from an experimental test conducted on Shanghai Medium 
Speed Maglev Line. Several accelerometers are installed to detect the acceleration of 
maglev bridges, and all the accelerometers are used to collect vertical accelerations. The 
data is measured by a 16-channel data acquisition equipment and recorded in a high-
memory and high-storage portable computer. The sampling rate of data acquisition is 
equal to 5,000 Hz. Four accelerometers, denoted A1 to A4, are representative of this 
report. A1 and A2 is installed on the steel bridge, where A1 is at quarter location of 
bridge and A2 is at middle location of bridge. A3 and A4 is installed on the concrete 
bridge, where A3 is at quarter location of bridge and A4 is at middle location of bridge. 
The dataset is packaged from five individual groups, and each group simultaneously 
covers the acceleration data from A1 to A4. The length of acceleration data equals to 
100,000, meaning that each group records the change of acceleration in a total of 20 
seconds. 

 
Model establishment 
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The proposed BiLSTM model contains an input layer, a LSTM layer, and an output 
layer. The input size and output size are both equal to 1, thus this study is a single-to-
single data reconstruction. The adjustable hyperparameters are defined that the size of 
the hidden state is 40, and the learning rate of model is 0.01. The model is optimized by 
using Mean Square Error (MSE), which is also the criterion of model assessment. The 
model is trained under 1,000 iterations, and the programming is implemented with 
PyTorch 1.12.1 and Python 3.8.  

 
Data reconstruction 

 
The acceleration data is reconstructed from A1 to A2, A2 to A1, A3 to A4 and A4 

to A3. Therefore, four tasks are achieved in this study, denoted task A to task D. Data 
from each group is used to establish a specified BiLSTM model in each task. Only first 
0.1 second data (data length is 500) is selected as training dataset to preserve the high 
model prediction performance with a relatively low time cost of model training.  

Table I shows the results of model performance, which are represented as MSEs 
between ground truth and prediction obtained from five groups. The MSEs are 
calculated in a range of total length, thus it reflects the predicting generalizability of 
BiLSTM model. Overall, the MSEs are at a very low magnitude of 10-5, though the 
training data length is only hundredth of whole data length. The MSEs from task C and 
D are much lower than that from task A and B. It means that the acceleration data from 
concrete bridge is easier to be extracted its features. It is close of MSEs between task C 
and task D, while MSEs from task A are much larger than that from task B. It indicates 
that the data reconstruction is more difficult for steel bridge compared to concrete bridge. 
There exists a difference of MSEs among five groups. The prediction performs the best 
in Group V, where the MSEs in all four tasks are the lowest in this group. Task C and 
task D performs the worst in Group IV, while task A and task B performs the worst in 
Group III. 

 
 

TABLE I. MODEL PERFORMANCE IN FOUR TASKS (UNIT: ×10-5) 
 Group I Group II Group III Group IV Group V 

Task A 40.531 18.702 70.320 10.846 8.850 
Task B 4.214 9.402 25.892 4.054 2.526 
Task C 0.595 1.061 1.044 6.640 0.318 
Task D 0.479 0.999 0.865 7.612 0.275 

 
 

      To straightforwardly demonstrate the prediction effectiveness by using BiLSTM 
model, Fig. 4 shows the ground truth and prediction results extracted from Group V. 

As shown in Fig. 4, the good agreement between ground truth and prediction is 
found from task C and task D, while there is a huge deviation between ground truth and 
prediction in task A and task B. This results in a line with the MSE results obtained from 
Table I. To make a better prediction, the proposed BiLSTM model should be adjusted 
with its parameters to satisfy the requirements of data reconstruction in task A and task 
B.  

To illustrate the superiority of using BiLSTM, Table II shows the MSEs of group V 
obtained from three methods, that are BiLSTM, LSTM and RNN. Task C and task D 
are adopted since the features from time-series can only learnt from them. In both tasks, 



BiLSTM owns the best performance with the lowest MSEs, followed by LSTM and 
RNN. Especially in task D, the existence of LSTM block boosts the model performance 
when comparing RNN to LSTM and BiLSTM. Therefore, BiLSTM is expected to be 
the best option for data reconstruction in this study. 

 
 

TABLE II. PERFROMANCE OF THREE METHODS IN TASK C AND TASK D (UNIT: ×10-5) 
 RNN LSTM BiLSTM 

Task C 0.328 0.319 0.318 
Task D 0.400 0.282 0.275 

 
 

 

 
Figure 4. The ground truth and prediction of whole-length data in Group V. 

 
 

CONCLUSION 
 

The structural health monitoring relies on a comprehensive dataset to make a data-
driven analysis for condition monitoring, damage detection, and risk prediction. 
However, it is always a great concern that the data is in absence or in a lack of 
information. To supplement the shortage of data missing, this study proposes a 
bidirectional long short-term (BiLSTM) memory network to make up those missing 
data. The effectiveness of method is verified by using acceleration data from bridges 
under a maglev test line. Results show that the use of BiLSTM can realize the objective 
of data reconstruction and may receive a better prediction compared to LSTM and RNN. 
It is available for reconstructing data from a concrete bridge, and there is still a room of 



improvement for reconstructing data from a steel bridge. Further study will focus on the 
adaptability of method, the increase of prediction accuracy, and the extension of 
application scenarios. 
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