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ABSTRACT

Maglev is a developing transportation mode in the recent years, and its safety and
stability are required to be ensured by structural health monitoring system. However,
the data measured by some sensors may be partially or totally unavailable due to the
external electromagnetic interference or sensor failure. While, in some cases, those
missing data are important to identify and analyze damage of maglev bridges. Since the
structural dynamic characteristics of maglev bridge are complicated, the data
reconstruction of those sensors becomes challenging. Therefore, this study proposes a
bidirectional long short-term memory (BiLSTM) network to accurately reconstruct the
maglev bridge acceleration data. The design of long short-term memory helps to
sufficiently exploit the time series data and learn the hidden features of maglev bridge
acceleration data between sensors. The bidirectional architecture enables the network to
simultaneously learn the time series data from past and future, which is beneficial to
extract more hidden features. A dataset collected from an in-site experiment for maglev
bridge is used to verify the feasibility of the proposed method. The lost acceleration data
from abnormal sensors is predicted by the acceleration data recorded from normally
operating sensors. The results shows that the difference between predicted and true
acceleration data is at a very low magnitude. Consequently, the proposed method can
be applied for the high-performance reconstruction of maglev bridge acceleration data.

INTRODUCTION

Maglev system consists of train, suspension bogie, rail, and bridge. The degradation
of maglev bridges may affect the structural stability of maglev system. To control the
structural performance of maglev systems and improve the reliability of bridges, it is
critical to predict the acceleration from different sensors installed on the maglev bridge
by establishing a fair and accurate predictive model, which is the basis for maglev bridge
acceleration predictions.

With the thriving progress in artificial intelligence and big data technology, deep
learning methods have been widely applied in the modeling of maglev bridge
acceleration prediction. Since the maglev bridge accelerations are a kind of time-series,
recurrent neural networks (RNNs), as a class of the deep learning methods, are
promising to realize the data-driven predictive model in the maglev bridge acceleration.
In RNN, the transmission of information is shaped as a loop by allowing the output from
one unit to influence the subsequent input to the same unit. Hence, this so-called
feedback connections in RNN enable the prediction on an entire time-series.

However, the long-term gradients which are backpropagated can vanish or explode
thus RNN may be unable to transmit the information efficiently. To solve this shortage,
long short-term memory (LSTM) network is introduced [1]. As a special design of RNN,
LSTM consists of three gates responsible for the transmission of information. Due to
this, LSTM is outperformed than vanilla RNNs on some temporal data processing tasks

[2].
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As a kind of special LSTM, this study aims to propose a bidirectional LSTM
(BiLSTM) network for the prediction of multiple maglev bridge accelerations. First,
some acceleration sensors collect historical acceleration data on the maglev bridges,
followed by the acquisition of dataset prepared for BILSTM network. Then, a portion
of them is manipulated as the lost data of maglev bridge accelerations, and the remaining
acceleration data is regarded as the training dataset. Finally, the prediction is realized by
BiLSTM network for the data reconstruction of lost accelerations for a maglev bridge.

METHODOLOGY

Since LSTM is a special type of RNN, the definition of RNN is first given. Fig. 1
shows the structure of RNN, where unit A is the main body that receives the input x;
and generates the output h;. The loop structure of RNN enables the information of one
moment to be transmitted to the next moment. Thus, the information can be retained by
RNN, which is impossible in other neural networks. As shown in Fig. 1, RNN can be
thought of being made up of multiple copies of the identical unit, and the output of each
unit serves as the input of its following unit. The structure of RNN is like a chain through
the time, which can be regarded as a natural design for a neural network to exploit time
series data.
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Figure 1. The structure of recurrent neural network.
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Fig. 2 shows the design of block structure between unit of LSTM and RNN. Both
have the cell for remembering the values over arbitrary time intervals, this helps both to
form a short-term memory for the information. However, the unit consists of only a very
simple layer (such as a single tanh function) in RNNs while multiple layers in LSTM.
The layer difference lies in the design of sigmoid function g, which is a lack in RNN.
The output of each sigmoid function represents the weight on the transmission of
information and varies from 0 to 1, which means that the transmission of information is
totally prohibited when ¢ = 0 while is totally permitted when o = 1.
The sigmoid function is also called gate in LSTM. From the left to right in a LSTM
unit, the name of three gates is forget gate, input gate and output gate, respectively.
Assumed the input of a LSTM unit is denoted as x;, the former state and current state

of cell is denoted as ¢;_; and c¢;, and the output of a LSTM is denoted as h;, the goal of
three gates are that



Forget gate: determination on the amount of information dropping from h;_; and
Ct—1»

Input gate: determination on the amount of information adding from x; to c;,

Output gate: determination on the amount of information updating h;.
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Figure 2. The block structure in RNN and LSTM.

To realize the function of forget gate, input gate, and output gate, the following
equations are satisfied:

iy = o(Wixy + Wyihe_1 + by) (1)

fe = o(Wrxe + Wyphe_q + bf) )

0 = c(Wyxy + Wyohe_1 + by) 3)

¢ = fr ©croq + iy © tanh(Wyx, + Wyzhe—y + by) 4)
h; = o; O tanh(c;) (5)

By using these three gates, LSTM can realize the control on the transmission of
information in both long-term and short-term memory. Thus, this is well-suited as the



predictive model for time-series. LSTM has been widely utilized by the researchers for
purposes of structural identification and response prediction [3-5].

The regular LSTM network allows the information flow in only one direction.
While in the bidirectional LSTM (BiLSTM) network, the information can be
transmitted in two directions, i.e., in backwards and forwards, as represented in Fig. 3.
The hidden states computed from two information flows are concatenated. As a result,
the information from both past and future states can be obtained simultaneously, which
effectively increase the amount of information available. Applications of BiLSTM in
structural engineering can be found in the recent literature [6-8] and deserve more
studies.
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Figure 3. The architecture of bidirectional LSTM (BiLSTM) network.

RESULTS
Data preparation

The dataset is originated from an experimental test conducted on Shanghai Medium
Speed Maglev Line. Several accelerometers are installed to detect the acceleration of
maglev bridges, and all the accelerometers are used to collect vertical accelerations. The
data is measured by a 16-channel data acquisition equipment and recorded in a high-
memory and high-storage portable computer. The sampling rate of data acquisition is
equal to 5,000 Hz. Four accelerometers, denoted Al to A4, are representative of this
report. Al and A2 is installed on the steel bridge, where Al is at quarter location of
bridge and A2 is at middle location of bridge. A3 and A4 is installed on the concrete
bridge, where A3 is at quarter location of bridge and A4 is at middle location of bridge.
The dataset is packaged from five individual groups, and each group simultaneously
covers the acceleration data from Al to A4. The length of acceleration data equals to
100,000, meaning that each group records the change of acceleration in a total of 20
seconds.

Model establishment



The proposed BiLSTM model contains an input layer, a LSTM layer, and an output
layer. The input size and output size are both equal to 1, thus this study is a single-to-
single data reconstruction. The adjustable hyperparameters are defined that the size of
the hidden state is 40, and the learning rate of model is 0.01. The model is optimized by
using Mean Square Error (MSE), which is also the criterion of model assessment. The
model is trained under 1,000 iterations, and the programming is implemented with
PyTorch 1.12.1 and Python 3.8.

Data reconstruction

The acceleration data is reconstructed from Al to A2, A2 to Al, A3 to A4 and A4
to A3. Therefore, four tasks are achieved in this study, denoted task A to task D. Data
from each group is used to establish a specified BILSTM model in each task. Only first
0.1 second data (data length is 500) is selected as training dataset to preserve the high
model prediction performance with a relatively low time cost of model training.

Table I shows the results of model performance, which are represented as MSEs
between ground truth and prediction obtained from five groups. The MSEs are
calculated in a range of total length, thus it reflects the predicting generalizability of
BiLSTM model. Overall, the MSEs are at a very low magnitude of 10, though the
training data length is only hundredth of whole data length. The MSEs from task C and
D are much lower than that from task A and B. It means that the acceleration data from
concrete bridge is easier to be extracted its features. It is close of MSEs between task C
and task D, while MSEs from task A are much larger than that from task B. It indicates
that the data reconstruction is more difficult for steel bridge compared to concrete bridge.
There exists a difference of MSEs among five groups. The prediction performs the best
in Group V, where the MSEs in all four tasks are the lowest in this group. Task C and
task D performs the worst in Group IV, while task A and task B performs the worst in
Group II1.

TABLE I. MODEL PERFORMANCE IN FOUR TASKS (UNIT: x10)

Group I Group 11 Group 111 Group IV Group V
Task A 40.531 18.702 70.320 10.846 8.850
Task B 4214 9.402 25.892 4.054 2.526
Task C 0.595 1.061 1.044 6.640 0.318
Task D 0.479 0.999 0.865 7.612 0.275

To straightforwardly demonstrate the prediction effectiveness by using BiLSTM
model, Fig. 4 shows the ground truth and prediction results extracted from Group V.

As shown in Fig. 4, the good agreement between ground truth and prediction is
found from task C and task D, while there is a huge deviation between ground truth and
prediction in task A and task B. This results in a line with the MSE results obtained from
Table I. To make a better prediction, the proposed BiLSTM model should be adjusted
with its parameters to satisfy the requirements of data reconstruction in task A and task
B.

To illustrate the superiority of using BiLSTM, Table II shows the MSEs of group V
obtained from three methods, that are BILSTM, LSTM and RNN. Task C and task D
are adopted since the features from time-series can only learnt from them. In both tasks,



BiLSTM owns the best performance with the lowest MSEs, followed by LSTM and
RNN. Especially in task D, the existence of LSTM block boosts the model performance
when comparing RNN to LSTM and BiLSTM. Therefore, BILSTM is expected to be
the best option for data reconstruction in this study.

TABLE II. PERFROMANCE OF THREE METHODS IN TASK C AND TASK D (UNIT: x107)

RNN LSTM BiLSTM
Task C 0.328 0.319 0.318
Task D 0.400 0.282 0.275
8 Task A Ground truth — — — Prediction
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Figure 4. The ground truth and prediction of whole-length data in Group V.

CONCLUSION

The structural health monitoring relies on a comprehensive dataset to make a data-
driven analysis for condition monitoring, damage detection, and risk prediction.
However, it is always a great concern that the data is in absence or in a lack of
information. To supplement the shortage of data missing, this study proposes a
bidirectional long short-term (BiLSTM) memory network to make up those missing
data. The effectiveness of method is verified by using acceleration data from bridges
under a maglev test line. Results show that the use of BILSTM can realize the objective
of data reconstruction and may receive a better prediction compared to LSTM and RNN.
It is available for reconstructing data from a concrete bridge, and there is still a room of



improvement for reconstructing data from a steel bridge. Further study will focus on the
adaptability of method, the increase of prediction accuracy, and the extension of
application scenarios
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